DOI QR코드

DOI QR Code

젊은 성인 근시안에서 비구면 소프트 콘택트렌즈 착용 후 구면수차와 코마수차의 변화

Changes in Spherical Aberration and Coma Aberration after Wearing Aspheric Soft Contact Lens in Young Myopes

  • 임동규 (을지대학교 대학원 안경광학과) ;
  • 권혁 (을지대학교 보건대학원 안경광학과) ;
  • 이군자 (을지대학교 대학원 안경광학과)
  • Lim, Dong-Kyu (Dept. of Optometry, Graduate School, Eulji University) ;
  • Kwon, Hyeok (Dept. of Optometry, Graduate School of Public Health, Eulji University) ;
  • Lee, Koon-Ja (Dept. of Optometry, Graduate School, Eulji University)
  • 투고 : 2018.11.13
  • 심사 : 2018.12.16
  • 발행 : 2018.12.31

초록

목적 : 비구면 디자인의 소프트 콘택트렌즈 ASCL(aspheric soft contact lens)로 굴절교정을 한 젊은 성인 근시안에서 콘택트렌즈 착용 후 안구의 구면수차와 코마수차 변화를 확인하였다. 방법 : 건강한 성인 근시안 50명(평균 연령: $23.15{\pm}1.70$세, 평균 등가구면굴절력: $-2.90{\pm}1.75D$)을 대상으로 굴절교정용 ASCL(Biotrue, Bausch+Lomb, USA)을 착용시킨 후 검사실의 조도 100 lx에서 고위수차와 동공크기를 측정하였다. 고위수차는 Wavefront Analyzer를 사용하여 동공크기 4 mm 영역에서 측정하였고, 동공크기는 Pupillometer를 이용하여 3.5 m 거리의 물체를 주시하도록 한 후 암소시(scotopic condition, light off) 상태에서 측정하였다. 결과 : 20대 근시안의 구면수차와 코마수차는 $0.026{\pm}0.031{\mu}m$, $0.078{\pm}0.039{\mu}m$, ASCL 착용 후에는 $0.019{\pm}0.026{\mu}m$ and $0.082{\pm}0.038{\mu}m$로 구면수차는 감소하고 코마수차는 유의하게 증가하였다. 대상안 중 구면수차가 감소한 경우는 전체의 68%로 양의 구면수차를 갖는 대상안에서 감소하였고, 증가한 경우는 11%로 음의 구면수차를 갖는 대상안에서 증가하였다. 코마수차는 대상안의 53%에서 증가하였고 19%에서는 변함이 없었으며 28%에서 감소하였다. 약도 및 중등도 근시안에서 구면수차는 근시도와 상관성이 없었고, 코마수차는 근시도가 높을수록 큰 것으로 나타났다. 결론 : 조절자극이 없는 암소시 상태에서 ASCL 착용 후 안구의 구면수차는 양의 값을 갖는 경우에는 감소하지만 음의 값을 갖는 경우에는 증가하였고, 이는 ASCL 디자인과 동공크기가 영향을 준 것으로 생각된다.

Purpose : We investigated the change of spherical and comma aberrations after wearing aspheric soft contact lens (ASCL) in young myopes. Methods : Fifty young myopes ($23.15{\pm}1.70years$, spherical equivalent: $-2.90{\pm}1.75D$) were recruited and refractive errors were corrected using ASCL (Biotrue, Bausch+Lomb, USA). High order aberrations were measured in the 4 mm pupil size using the wavefront analyze and pupil sizes were measured with a pupillometer at the modes of scotopic condition (light off) at 3.5 m in the 100 lx illuminance condition. Results : Spherical aberrations and coma aberration of the 20s myopes were $0.026{\pm}0.031{\mu}m$ and $0.078{\pm}0.039{\mu}m$ respectively, and $0.019{\pm}0.026{\mu}m$ and $0.082{\pm}0.038{\mu}m$ after ASCL wear that spherical aberration was decreased and coma aberration was increased. However, spherical aberration was decreased in the 68% of the subject have positive spherical aberration, and increased in the 11% of the subject have negative spherical aberration. Coma aberration was increased in the 53% of the subject, did not change in the 19% of the subjects, and decreased in the 28% of the subject. Spherical aberration was not different with the refractive errors in low and moderate myopies, however, coma aberrations was higher in the higher myopes. Conclusion : In a scotopic condition without accommodation stimuli, spherical aberration is decreased after wearing ASCL, however in the subject have negative spherical aberration spherical aberration could be increased, and which is thought to be the influence of contact lens design and pupil size.

키워드

참고문헌

  1. Song YY, Lee HJ et al.: Analysis of higher-order wavefront aberration in the cornea of Korean. Korean J Vis Sci. 14(4), 279-288, 2012. http://www.riss.kr/link?id=A99577190
  2. Mun GH, Im SK et al.: Comparison of clinical results between two spherical aberration-free intraocular lenses. J Korean Ophthalmol Soc. 51(5), 670-676, 2010. http://www.riss.kr/link?id=A100523773 https://doi.org/10.3341/jkos.2010.51.5.670
  3. Yamaguchi T, Negishi K et al.: Correlation between contrast sensitivity and higher-order aberration based on pupil diameter after cataract surgery. Clin Ophthalmol. 2011(5), 1701-1707, 2011. https://www.ncbi.nlm.nih.gov/pubmed/22205829
  4. Buhren J, Martin T et al.: Correlation of aberrometry, contrast sensitivity, and subjective symptoms with quality of vision after LASIK. J Refract Surg. 25(7), 559-568, 2009. https://www.ncbi.nlm.nih.gov/pubmed/19662912 https://doi.org/10.3928/1081597X-20090610-01
  5. McAlinden C, Moore JE: Comparison of higher order aberrations after LASIK and LASEK for myopia. J Refract Surg. 26(1), 45-51, 2010. https://www.ncbi.nlm.nih.gov/pubmed/20199012 https://doi.org/10.3928/1081597X-20101215-07
  6. Resan M: Advance in ophthalmology: Wavefront Aberrations, 7th ed., Belgrade, IntechOpen, pp. 191-204, 2012. https://www.intechopen.com/books/advances-in-ophthalmology/wavefront-aberrations
  7. Liang J, Grimm B et al.: Objective measurement of wave aberrations of the human eye with the use of a hartmann-shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis. 11(7), 1949-1957, 1994. https://www.ncbi.nlm.nih.gov/pubmed/8071736 https://doi.org/10.1364/JOSAA.11.001949
  8. Cervino A, Hosking SL et al.: A pilot study on the differences in wavefront aberrations between two ethnic groups of young generally myopic subjects. Ophthalmic Physiol Opt. 28(6), 532-537, 2008. https://www.ncbi.nlm.nih.gov/pubmed/19076555 https://doi.org/10.1111/j.1475-1313.2008.00592.x
  9. Hashemi H, Khabazkhoob M et al.: Higher order aberrations in a normal adult population. J Curr Ophthalmol. 27(3-4), 115-124, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27239589
  10. Born M, Wolf E: Principles of optics, 7th ed., New York, Cambridge University Press, pp. 523-525, 1999. http://www.riss.kr/link?id=M11493681
  11. Seong PJ: Optometry, 8th ed., Seoul, Daihaksealim, pp. 45-70, 2013.
  12. Taneri S, Oehler S et al.: Influence of mydriatic eye drops on wavefront sensing with the Zywave aberrometer. J Refract Surg. 27(9), 678-685, 2011. https://www.ncbi.nlm.nih.gov/pubmed/21446641 https://doi.org/10.3928/1081597X-20110317-01
  13. Ahn SM, Seok SS et al.: Considering spherical aberration in choosing the wavefront map for laser vision correction. J Korean Ophthalmol Soc. 52(2), 147-156, 2011. http://www.riss.kr/link?id=A100523969 https://doi.org/10.3341/jkos.2011.52.2.147
  14. Artal P, Guirao A et al.: Compensation of corneal aberrations by the internal optics in the human eye. J Vis. 1(1), 1-8, 2001. https://www.ncbi.nlm.nih.gov/pubmed/12678609
  15. McLellan JS, Marcos S et al.: Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci. 42(6), 1390-1395, 2001. https://www.ncbi.nlm.nih.gov/pubmed/11328756
  16. Walsh G: The effect of mydriasis on the pupillary centration of the human eye. Ophthalmic Physiol Opt. 8(2), 178-182, 1988. https://www.ncbi.nlm.nih.gov/pubmed/3211558 https://doi.org/10.1111/j.1475-1313.1988.tb01034.x
  17. Liang J, Williams DR: Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A Opt Image Sci Vis. 14(11), 2873-2883, 1997. https://www.ncbi.nlm.nih.gov/pubmed/9379245 https://doi.org/10.1364/JOSAA.14.002873
  18. Pantanelli S, MacRae S et al.: Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor. Ophthalmology 114(11), 2013-2021, 2007. https://www.ncbi.nlm.nih.gov/pubmed/17553566 https://doi.org/10.1016/j.ophtha.2007.01.008
  19. Karimian F, Feizi S et al.: Higher-order aberrations in myopic eyes. J Ophthalmic Vis Res. 5(1), 3-9, 2010. https://www.ncbi.nlm.nih.gov/pubmed/22737320
  20. Oshika T, Tokunaga T et al.: Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis. Invest Ophthalmol Vis Sci. 47(4), 1334-1338, 2006. https://www.ncbi.nlm.nih.gov/pubmed/16565365 https://doi.org/10.1167/iovs.05-1154
  21. Dietze HH, Cox MJ: On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power. Optom Vis Sci. 80(2), 126-134, 2003. https://www.ncbi.nlm.nih.gov/pubmed/12597327 https://doi.org/10.1097/00006324-200302000-00008
  22. Lopez-Gil N, Castejon-Mochon JF et al.: Aberration generation by contact lenses with aspheric and asymmetric surfaces. J Refract Surg. 18(5), S603-S609, 2002. https://www.ncbi.nlm.nih.gov/pubmed/12361166
  23. Charman WN, Chateau N: The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration. Ophthalmic Physiol Opt. 23(6), 479-493, 2003. https://www.ncbi.nlm.nih.gov/pubmed/14622350 https://doi.org/10.1046/j.1475-1313.2003.00132.x
  24. Artal P, Berrio E et al.: Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 19(1), 137-143, 2002. https://www.ncbi.nlm.nih.gov/pubmed/11778716 https://doi.org/10.1364/JOSAA.19.000137
  25. He JC, Sun P et al.: Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults. Vision Res. 42(8), 1063-1070, 2002. https://www.ncbi.nlm.nih.gov/pubmed/11934456 https://doi.org/10.1016/S0042-6989(02)00035-4
  26. Thibos LN, Cheng X et al.: Design principles and limitations of wave-front guided contact lenses. Eye Contact Lens 29(1 Suppl), S167-S170, 2003. https://www.ncbi.nlm.nih.gov/pubmed/12772758
  27. Williams D, Yoon GY et al.: Visual benefit of correcting higher order aberrations of the eye. J Refract Surg. 16(5), S554-S559, 2000. https://www.ncbi.nlm.nih.gov/pubmed/11019871
  28. Yoon GY, Williams DR: Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A Opt Image Sci Vis. 19(2), 266-275, 2002. https://www.ncbi.nlm.nih.gov/pubmed/11822589 https://doi.org/10.1364/JOSAA.19.000266
  29. Dietze HH, Cox MJ: Correcting ocular spherical aberration with soft contact lenses. J Opt Soc Am A Opt Image Sci Vis. 21(4), 473-485, 2004. https://www.ncbi.nlm.nih.gov/pubmed/15078017 https://doi.org/10.1364/JOSAA.21.000473
  30. Vaz TC, Gundel RE: High-and low-contrast visual acuity measurements in spherical and aspheric soft contact lens wearers. Cont Lens Anterior Eye 26(3), 147-151, 2003. https://www.ncbi.nlm.nih.gov/pubmed/16303510 https://doi.org/10.1016/S1367-0484(03)00025-0
  31. Kim JM, Lee KJ: Comparison of higher-order aberrations and visual quality in eyes wearing aspheric and spherical silicone hydrogel contact lenses. Korean J Vis Sci. 17(3), 343-354, 2015. http://www.riss.kr/link?id=A101074675 https://doi.org/10.17337/JMBI.2015.17.3.343
  32. Lim DK, Lee KJ: Changes in pupil size after wearing soft contact lenses in myopes. Korean J Vis Sci. 19(4), 433-441, 2017. http://www.riss.kr/link?id=A104715124 https://doi.org/10.17337/JMBI.2017.19.4.433
  33. Cox I, Holden BA: Soft contact lens-induced longitudinal spherical aberration and its effect on contrast sensitivity. Optom Vis Sci. 67(9), 679-683, 1990. https://www.ncbi.nlm.nih.gov/pubmed/2234826 https://doi.org/10.1097/00006324-199009000-00004
  34. Rae SM, Allen PM et al.: Increasing negative spherical aberration with soft contact lenses improves high and low contrast visual acuity in young adults. Ophthalmic Physiol Opt. 29(6), 593-601, 2009. https://www.ncbi.nlm.nih.gov/pubmed/19663925 https://doi.org/10.1111/j.1475-1313.2009.00678.x
  35. Hammer RM, Holden BA: Spherical aberration of aspheric contact lenses on eye. Optom Vis Sci. 71(8), 522-528, 1994. https://www.ncbi.nlm.nih.gov/pubmed/7970569 https://doi.org/10.1097/00006324-199408000-00006
  36. Efron S, Efron N et al.: Optical and visual performance of aspheric soft contact lenses. Optom Vis Sci. 85(3), 201-210, 2008. https://www.ncbi.nlm.nih.gov/pubmed/18317336 https://doi.org/10.1097/OPX.0b013e318165100a
  37. Kang DW, Eom YS et at al.: Evaluation of objective accommodation power in different age groups using an auto accommodation refractormeter. J Korean Ophthalmol Soc. 57(1), 20-24, 2016. http://www.riss.kr/link?id=A101742239 https://doi.org/10.3341/jkos.2016.57.1.20
  38. Ryu NY, Kim SR et al.: Correlations between higher-order aberrations and myopic degree. J Korean Oph Opt Soc. 19(2), 199-206, 2014. http://www.riss.kr/link?id=A104881856 https://doi.org/10.14479/jkoos.2014.19.2.199
  39. Atchison DA, Mathur A: Effects of pupil center shift on ocular aberrations. Invest Ophthalmol Vis Sci. 55(9), 5862-5870, 2014. https://www.ncbi.nlm.nih.gov/pubmed/25125597 https://doi.org/10.1167/iovs.14-14212
  40. Lee JH, Lee HB et al.: Ophthalmology, 8th ed., Seoul, Ilchokak, pp. 328-329, 2008.
  41. Yang Y, Thompson K et al.: Pupil location under mesopic, photopic, and pharmacologically dilated conditions. Invest Ophthalmol Vis Sci. 43(7), 2508-2512, 2002. https://www.ncbi.nlm.nih.gov/pubmed/12091457
  42. Noback CR, Ruggiero DA et al.: The visual system, 6th ed., Philadelphia, PA, Springer, pp. 342-344, 2007. http://online-koptometry.net/journal/article.php?code=60503