• Title/Summary/Keyword: Spherical Domain

Search Result 69, Processing Time 0.022 seconds

Dynamic ice force estimation on a conical structure by discrete element method

  • Jang, HaKun;Kim, MooHyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.136-146
    • /
    • 2021
  • This paper aims to numerically estimate the dynamic ice load on a conical structure. The Discrete Element Method (DEM) is employed to model the level ice as the assembly of numerous spherical particles. To mimic the realistic fracture mechanism of ice, the parallel bonding method is introduced. Cases with four different ice drifting velocities are considered in time domain. For validation, the statistics of time-varying ice forces and their frequencies obtained by numerical simulations are extensively compared against the physical model-test results. Ice properties are directly adopted from the targeted experimental test set up. The additional parameters for DEM simulations are systematically determined by a numerical three-point bending test. The findings reveal that the numerical simulation estimates the dynamic ice force in a reasonably acceptable range and its results agree well with experimental data.

Compression Artifact Reduction for 360-degree Images using Reference-based Deformable Convolutional Neural Network

  • Kim, Hee-Jae;Kang, Je-Won;Lee, Byung-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose an efficient reference-based compression artifact reduction network for 360-degree images in an equi-rectangular projection (ERP) domain. In our insight, conventional image restoration methods cannot be applied straightforwardly to 360-degree images due to the spherical distortion. To address this problem, we propose an adaptive disparity estimator using a deformable convolution to exploit correlation among 360-degree images. With the help of the proposed convolution, the disparity estimator establishes the spatial correspondence successfully between the ERPs and extract matched textures to be used for image restoration. The experimental results demonstrate that the proposed algorithm provides reliable high-quality textures from the reference and improves the quality of the restored image as compared to the state-of-the-art single image restoration methods.

  • PDF

Five Mirror System with Minimal Central Obscuration and All Zero 3rd Order Aberrations Suitable for DUV Optical Lithography (모든 3차 수차를 영으로 하고 Central Obscuration이 최소화된 극자외선 리소그라피용 5-반사광학계)

  • 이동희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • A five mirror system with a reduction magnification(M=+1/5) is designed for DUV optical lithography. First, for spherical mirror systems, the numerical solutions of all zero 3rd order aberrations are derived and the 3-dimensional shape of the solution-domain is obtained. In these solutions, we select solutions which have as less residual aberrations and smaller central obscurration as possible and the aspherization is carried out to the last two spherical mirrors to obtain a system that has as higher NA as possible. Finally we obtain the system of which NA is 0.45, the central obscuration is about 25% and the resolution is about 650 cycles/mm at the 50% MTF value criterion and the depth of focus of 0.8${\mu}m$ for the nearly incoherent illumination (${\sigma}$=1.0) and the wavelength of 0.193${\mu}m$ (ArF excimer laser line).

  • PDF

Simulation of Time-Domain Acoustic Wave Signals Backscattered from Underwater Targets (수중표적의 시간영역 음파 후방산란 신호 모의)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.140-148
    • /
    • 2008
  • In this study, a numerical method for a time-domain acoustic wave backscattering analysis is established based on a physical optics and a Fourier transform. The frequency responses of underwater targets are calculated based on physical optics derived from the Kirchhoff-Helmholtz integral equation by applying Kirchhoff approximation and the time-domain signals are simulated taking inverse fast Fourier transform to the obtained frequency responses. Particularly, the adaptive triangular beam method is introduced to calculate the areas impinged directly by acoustic incident wave and the virtual surface concept is adopted to consider the multiple reflection effect. The numerical analysis result for an acoustic plane wave field incident normally upon a square flat plate is coincident with the result by the analytic time-domain physical optics derived theoretically from a conventional physical optics. The numerical simulation result for a hemi-spherical end-capped cylinder model is compared with the measurement result, so that it is recognized that the presented method is valid when the specular reflection effect is predominant, but, for small targets, gives errors due to higher order scattering components. The numerical analysis of an idealized submarine shows that the established method is effectively applicable to large and complex-shaped underwater targets.

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Development of three-dimensional global MHD model for an interplanetary coronal mass ejection

  • An, Jun-Mo;Magara, Tetsuya;Inoue, Satoshi;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2015
  • We developed a three-dimensional magnetohydrodynamic (MHD) code to reproduce the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain. On the basis of a comparison between a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  • PDF

Light Modeling with Radiance Map (라디안스 맵을 이용한 광원 모델잉)

  • Kim, Mo-Geun;Kim, Seong-Jin;Jeong, Sun-Gi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.491-498
    • /
    • 2001
  • We present a method of modeling lights from photographs taken with conventional imaging equipment. It does not use both any geometrical information and special apparatus to calculate surface reflection properties. To represent surface reflection properties of the scene, we use BRDFs which are calculated by radiance values of surface elements and light sources. And the BRDF data of each surface is further transformed to the spherical harmonic domain for efficient storage. Thus it allows to reconstruct the photo-realistic scene under different light sources, to manipulate diversely the arbitrary light source and to control exposure time of camera sensor. Moreover we test our algorithm with real image instead of synthetic image.

  • PDF

Surf Zone Wave Transformations Simulated by a Fully Nonlinear Boussinesq Equation (완전비선형 Boussinesq방정식을 이용한 쇄파대의 파랑변형 모의)

  • 윤종태;김종무
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.296-308
    • /
    • 2001
  • A fully nonlinear Boussinesq equation of Wei et al. is finite differenced by Adams predictor-corrector method. A spatially distributed source function and sponge layers are used to reduce the reflected waves in the domain and wale breaking mechanism is included in the equation. The generated waves are found to be good and the corresponding wale heights are very close to the target values. The shoaling of solitary wave and transformation of regular wave over submerged shelf were simulated successfully. The characteristics of breaking mechanism was identified through the numerical experiment and the results of two dimensional wave propagation test over the spherical shoal showed the importance of nonlinear wave model.

  • PDF