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Abstract 
 

Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly 

influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in 

transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differen-

tial geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such 

gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface 

geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute ge-

ometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. 

Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors af-

fecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteris-

tics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-

bility (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multi-axis freeform milling, rather than 

classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral 

gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-

axis freeform milling also need to be solved in a further study. 
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1. Introduction 

Parametric surfaces in computer aided geometric design 

(CAGD) are commonly defined on a triangular, rectangular 

or N-sided domain. The most important surface, the non-

uniform rational B-spline (NURBS) surface, which is defined 

on a rectangular domain, is mainly used to describe the shape 

of industrial products. However, due to its intrinsic properties, 

the NURBS surface cannot accurately depict a class of kine-

matic or dynamic shape, such as the tooth surfaces of spiral 

bevel gears. 

Spiral bevel gears, the teeth of which are curved and an-

gled away from the shaft centerline, are widely used in the 

power transmission of intersection axes. Unlike spur and 

helical gears in which teeth are generated from a cylinder 

blank, in spiral bevel gears, teeth are generated on a conical 

surface, which allows the teeth to come into contact with 

each other gradually. Since these gears provide excellent 

smoothness and load capacity, they are one of the most es-

sential components in modern mechanical engineering. The-

oretically, the tooth surfaces of spiral bevel gears are spheri-

cal involute surfaces [1]; actually, the tooth flank geometry 

almost completely depends on the related cutting processes. 

More precisely, spiral bevel gears are manufactured using 

cradle-type milling or hobbing machine tools; their geomet-

rical and functional properties are thus determined by the 

kinematic and dynamic characteristics of different machine 

tools. This is why standardized spiral bevel gears are not 

manufactured. Park and Lee [2] utilized the spherical invo-

lute tooth profile to standardize bevel gear systems and ex-

plained the geometric characteristics and kinematic behavior 

of the standardized bevel gears. 

Based on the milling or hobbing process, several practical 

approaches have been taken [3-6] to design the tooth surface 

of a spiral bevel gear using NURBS. Since the tooth surface 

is constructed from actual tooth surface sampling points [3, 4] 

or machining simulation points [5, 6], in the final digital 

model, the parametric feature information such as spiral an-

gle, nominal pressure angle, module, etc. is completely lost. 

The NURBS based approach cannot be conveniently used for 

the parametric modeling of a spiral bevel gear. 

Computer numerical control (CNC) cradle-type machine 
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tools have made it possible to perform nonlinear correction 

motions for the pinion and gear tooth surface cutting. Thus, 

better tooth contact quality should be achieved by using the 

optimal settings of machine tools according to the tooth con-

tact analysis (TCA) method [7-12]. Litvin et al. [8, 9] pro-

posed a local synthesis of spiral bevel gears with localized 

bearing contact and the predesigned parabolic function of a 

controlled level for transmission errors. The pinion tooth 

surface is generated by roll modification and cutting ratio 

variation in the process. Cao et al. [10] developed a function-

oriented active tooth surface design methodology to incorpo-

rate transmission errors and the contact path in the engage-

ment process of the spiral bevel gears. Favorable shape could 

therefore be controlled directly before manufacturing with 

cradle-type machine tools. Tang et al. [11] considered the 

kinematical errors of machine tools and the installation errors 

of the gear pairs in TCA. In their proposed error tooth contact 

analysis (ETCA) method, more processing parameters should 

be recommended than in TCA in spiral bevel gears cutting. 

However, because tooth surface quality is very sensitive to 

the dynamic errors of cradle-type machine tools, cutting pa-

rameters adjustment for machine tools is time-consuming 

tedious work and is unavailable in most cases. Furthermore, 

due to the limited cutting processes, it is known that the spi-

ral angle is not constant along the spiral bevel gear tooth. 

Consequently, Huston and Coy [13] believed that the incon-

stant spiral angle adversely modifies the tooth surface charac-

teristics, which in turn greatly affects the load distribution, 

contact stress, and erratic kinematics, while inducing vibra-

tions for the spiral bevel gears. In other words, an inconstant 

spiral angle cannot insure uniform kinematics and dynamics 

along the gear tooth with the mating gear. 

The logarithmic spiral (also known as the equiangular spi-

ral or growth curve), which commonly appears in nature, was 

first introduced into spiral bevel gear transmission for tooth 

surface description by Huston and Coy [13]. The logarithmic 

spiral bevel gear is considered to be an ideal spiral bevel gear 

due to its constant spiral angle properties. However, it is not 

convenient to manufacture such gears in the modern gear 

industry. Thus, a mathematical model suitable for accurate 

digital modeling and the differential geometrical characteris-

tics of the tooth surface have not yet been thoroughly investi-

gated. Tsai and Chin [14] applied the logarithmic spiral in 

bevel gear systems. They provided a relative complex math-

ematical description of the spiral tooth surface by solving 

equation systems. Hence, the surface representation does not 

have intuitive geometric meaning and is unsuitable for manu-

facturability analysis. Based on intuitive space geometry and 

kinematic theory, Li et al. [15] derived the spatial equation of 

the tooth surface. However, the form of the derived equation 

is difficult to understand without the help of professional 

tools such as CAD or Matlab platform. Recently, precision 

plastic forming processes, such as forging and cold extrusion 

have made it possible to mass produce small module spiral 

bevel gears that are widely used in the automobile industry [2, 

16]. Meanwhile, general multi-axis CNC milling machine 

tools (rather than the special cradle-type machine tools), have 

also made it possible to manufacture high precision large 

module gears in small batches for the shipbuilding industry 

[2, 17]. 

This paper is divided into five sections. In Section 1, the 

most intuitive mathematical model for the tooth surface of 

the logarithmic spiral bevel gear is proposed. Section 2 dis-

cusses the unified parametric surface definition on the paral-

lelogrammic domain for different kinematic styles. The dif-

ferential geometrical characteristics which will be useful for 

understanding tooth geometry and its manufacturability are 

then explained in Section 3. The logarithmic spiral bevel gear 

manufacturability with precision plastic forming processes 

and multi-axis freeform surface milling processes is then 

analyzed in Section 4. Section 5 then presents a discussion of 

the application advantages and the many urgent issues that 

still need to be solved. Our main contributions are the unified 

parametric representation of the logarithmic spiral tooth sur-

face, and the manufacturability analysis of the logarithmic 

spiral bevel gear with derived surface intuitive properties. 

 

2. Tooth surface geometry  

We focus on the most important factors that influence the 

configuration of an accurate mathematical model of the spiral 

bevel gear tooth surface. In order to meet a constant spiral 

angle transmission condition, we consider the logarithmic 

spiral curve in the tooth surface geometry. 

2.1 Spherical involute 

The spherical involute geometry is well described by 

Shunmugam et al. [18]. In addition, other works on the 

spherical involute geometry can be referred to [2, 14]. For 

ease of understanding Section 2.3, we illustrate the spherical 

involute geometry in this section as presented in [18]. 

The basic kinematic characteristics of a bevel gear pair 

may be described using the pitch cones and base cones. Un-
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Figure 1. Spherical involute geometry. 
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folding the base cone surface, point Q on the generatrix of 

the surface will trace a spherical involute P(x,y,z) as shown in 

Figure 1. In the right-handed coordinate system, assume that 

ρ0 is the distance from the apex o to point Q and δ is the base 

cone angle. P is a point on the spherical involute curve gen-

erated by point Q(ρ0sinδ,0,0), and T(ρ0sinδcosφ, ρ0sinδsinφ,0) 

is the tangent point on the base cone, where the involute gen-

erating angle φ is measured from o′Q to o′T on the base. The 

base cone surface can be formulated as  

 

 (     )          (    )                            ( ) 

 

Unfolding and stretching the base cone surface, the cut off 

generatrix oQ will form a plane Π tangent to the base cone 

surface at the generatrix oT. A family of tangent planes will 

be obtained, while angle φ varies. The family of tangent 

planes, which envelopes the base cone, may be described by 

a single parametric equation as 

 

 (       )                               

                                                                      ( ) 

 

Also, the arc length QT should clearly be equal to PT; i.e., 

       . Associated with the coordinate system, the 

chord length of PT can finally be formulated as 
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using 
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Then, solving Eqs. (2)-(4) simultaneously, the location of 

P can be obtained as 

 

{

    (                     )

    (                     )

                                                     
                  ( ) 

 

Eq. (5) can be written as 
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2.2 Planar logarithmic spiral 

Since every point on the logarithmic spiral has a constant 

spiral angle β between the tangent line and the radial line as 

shown in Figure 2, the planar logarithmic spiral is also called 

an equiangular spiral. Here, the local moving coordinate 

system ox′y′z′, which is used to depict the logarithmic spiral, 

is constructed on the tangent plane Π on the base cone, where 

o is the apex. 

The equation of the planar logarithmic spiral can by written 

with polar form as 

 

      
(       )           

                                      ( ) 

 

where r0 is the radius of the base circle of the planar loga-

rithmic spiral, and        
(    )     . 

2.3 Planar logarithmic spiral 

Take the local moving coordinate system ox′y′z′ into the 

global coordinate system oxyz. ox′ axis coincides with the ox 

axis, and oz′ axis coincides with the generatrix of the base 

cone as the kinematic initial condition, as shown in Figure 3. 

When the tangent plane Π rolls over the base cone without 

slipping, any point on the planar logarithmic spiral such as S 

can generate a trajectory after it contacts the base cone. Prac-

tically, the trajectory of S is a spherical involute, as described 

in section 2.1. When point S contacts the base cone, the con-

tact point S can be taken as the coordinate transformation 

result in the case where a point S′ (in Figure 2) positioned on 

the generatrix oQ rotates around the oz axis. 

According to cone geometry relations, the rotation angle ϕ 

can be expressed as 
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Figure 2. Planar logarithmic spiral. 

29



 S. Fan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 27~36 

 

                                                                                  ( ) 
 

Substituting the planar logarithmic spiral developing angle  

   with the rotation angle  , Eq. (7) can be formulated as 
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The rotation transformation of S is 
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Referring to Eq. (6), the variables related to the trajectory 

equation of S can be easily expressed as 
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and 
 

   (             )                                              (  ) 

 

where   (   )     . The trajectory of S, more pre-

cisely a spherical involute, can be formulated as a parametric 

equation of φ as 
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Figure 3. Tooth surface geometry. 
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Figure 4. Parallelogrammic domain of tooth surface. 
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Since S can be an arbitrary point on a planar logarithmic 

spiral, the tooth surface expression r(φ,ϕ) can be described 

with bi-parametric style in a natural way as 

 

 (   )                                                               (  ) 

 

Eq. (14) can be rewritten in a coordinate components form 

as 
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 (   )  (                     )   
                     

 (   )  (                     )   
                           

 (   )             
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where   (   )     ,           , and 

        .      and      are specified angle con-

straints that are related to the detailed parameters of the spiral 

bevel gear design. 

Figure 4 expresses the parallelogrammic domain of the 

tooth surface, which differs somewhat from the rectangular 

domain of the classical freeform surface such as in B-spline 

and NURBS. When φ is equal to a constant, its mapping 

curve on the tooth surface is exactly the planar logarithmic 

spiral in the moving tangent plane Π (in Figure 3). Similarly, 

when   is a constant, the mapping of the φ-curve is a spher-

ical involute. 

Meanwhile, the parallelogrammic domain can be taken as a 

result of the c curve sweep along the φ direction. Hence, 

without regard to the planar logarithmic spiral, the tooth sur-

face can be considered as being generated by a spatial curve 

(c curve in Figure 3) on the base cone in geometrical view. 

When      , we have 

 

 ( )     
         (                      )      

(  ) 

 

According to Eq. (17), the c curve is certainly a spatial log-

arithmic spiral [19]. The spatial logarithmic spiral also has a 

constant spiral angle β between its tangent vector and the 

generatrix vector, as seen in Figure 5. Figure 5 also illustrates 

the φ-curve (ϕ = constant) and the φ-curve (φ-ϕ = constant) 

on the tooth surface. 

 

3. Unified parametric surface description  

The above mentioned parametric surface equation is clear-

ly derived from the clockwise direction of ϕ, which is the 

same direction as the spiral angle β (see Figure 2) and the 

counterclockwise direction of φ (from top view, see Figure 3). 

If we change any direction of φ or ϕ, we can harvest different 
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Figure 5. Tooth surface and its characteristics. 
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parametric surfaces that can be used for bevel gears design. 

3.1 Unified description for planar spiral 

The direction of the spiral angle β determines whether the 

gear tooth is left-hand or right-hand. In the left-hand/right-

hand gear tooth, the outer half of the tooth is inclined in the 

counterclockwise/clockwise direction from the axial plane 

through the midpoint of the tooth, as viewed by an observer 

looking at the face of the gear. 

Assume that the counterclockwise direction of spiral angle 

β is positive (-), and vice versa, as illustrated in Figure 6. The 

planar logarithmic spiral can then be formulated as 

 

     
(        )         

                                    (  ) 

 

where        
         and β ≤ 0,     . Eq. (18) has 

the same style as Eq. (7); regardless of the direction of the 

spiral angle, the planar logarithmic spiral has a unified defini-

tion. 

3.2 Convex/concave tooth surface 

Obviously, Eq. (15) represents the convex tooth surface of 

different direction spiral bevel gears. Compared with the 

convex surface generating principle, the concave surface can 

be considered as the trajectory in which the logarithmic spiral 

curve in the tangent plane Π rolls over the base cone without 

slipping in the negative (-) direction (clockwise direction).  

Consequently, the equation of the concave surface is the 

same as the convex surface equation. The difference is the 

definition domain of parameter φ, as shown in Figure 7. 

3.3 Surface on parallelogrammic domain 

According to the above analysis, we can depict the tooth 

surfaces using a unified parametric surface Eq. (15). All sur-

faces are defined on different parallelogrammic domains that 

depend on the direction of φ and ϕ. Figure 8 shows the cate-

gory of the tooth surfaces. 

 

4. Differential geometrical characteristics  

The elastohydrodynamic lubrication, surface fatigue, con-

tact stress, wear, life and manufacturability of the spiral bevel 

gears heavily rely on the differential geometrical characteris-

tics of the tooth surface, such as normal vectors, principal 

curvatures and directions. The many advantageous properties 

of the logarithmic spiral bevel gears should be revealed by 

using classical differential geometry tools. 

4.1 First fundamental form 

The tooth surface Σ is described by a pair of parameters φ 

and ϕ through the vector equation r(φ,ϕ), where r is the posi-

tion vector of a typical point P on Σ. The base vectors of Σ at 

any point P are then given by 
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Figure 7. Planar spiral in different directions. 







0

0r

S

o

P

'x

'z

Tangent plane



 

Figure 6. Planar spiral in different direction. 

32



 S. Fan et al. / Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 27~36  

 

  

  

  

 
     

    
[

   (   )             (   )     

   (   )             (   )     

       (   )
]  

 (  ) 
 

Hence, the unit normal vector of P can be given by 
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The first fundamental form is formulated as 
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F = 0 means that the iso-parametric curves, more precisely 

the φ-curve and ϕ-curve shown in Figure 5, are mutually 

orthogonal anywhere on the tooth surface Σ. Thus, the iso-

parametric curves are the principal curve lines, and the base 

vectors coincide with the principal directions. 

Yet another important conclusion is hidden behind the first 

fundamental form of the tooth surface; i.e., the angle    

between the tangent vector and its radius vector of ϕ-curve at 

any point P is always equal to β because  
 

        (
  

  
) ‖  (

  

 
 )‖⁄                       (  ) 

 

This conclusion implies that every ϕ-curve is a spatial log-

arithmic spiral curve. In comparison with the c curve, the 

basic differences are the cone angle γ and its initial point P0. 

Based on the spherical triangle sine theorem, it is easy to 

obtain the relation between δ and γ. In other words, 

 

                                                                      (  ) 

 

where α is an instantaneous pressure angle. If γ is equal to the 

pitch angle γp, then α is the nominal pressure αn, of which the 

typical value is 20° in gear transmission. 

4.2 Second fundamental form 

Differentiate the normal vector Eq. (21) with parameters φ 

and ϕ, and obtain the following formulas 
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The second fundamental form is given by  
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In the second fundamental form, we focus on the principal 

curvatures and directions distribution on the tooth surface. 

Since F = 0 and M = 0, the principal curvature expressions 

can be derived respectively as 
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From Eqs. (19)-(20), the principal directions can be depict-

ed as 
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and 
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       (   )
]         
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The above explicit expressions allow us to compute the 

secondary characteristics of the tooth surface accurately from 

the gear parameters. On the other hand, we cannot accurately 

determine the principal curvatures and principal directions if 

the tooth surface is approximated by NURBS. 

 

5. Manufacturability analysis  

In the traditional cutting process, it is not possible to pro-

duce logarithmic spiral bevel gears, since the milling or hob-

bing will inevitably change the spiral angle during the 

movement of the machine tools. However, a suitable method 

for manufacturing logarithmic spiral bevel gears remains 

uncertain. 

5.1 Precision forging 

Among the various plastic forming methods, precision 

forging offers the possibility of obtaining high quality parts. 

It allows better material utilization in comparison to cutting, a 

reduction of the costs due to the shorter cycle times, and new 

possibilities concerning the tooth surface geometry of the 

forged gears. Precision forging also contributes to fulfill the 

demand of the production of highly loaded and small module 

gears widely used in the automobile industry, because of the 

fiber orientation which is favorable for carrying high oscillat-

ing loads [20]. 

However, precision forging technology is typically only 

applied for manufacturing spur gears and straight bevel gears 

[16]. For logarithmic spiral bevel gears, the basic limitation is 

the pattern draft of the forging die. The die geometry is ob-

tained for logarithmic spiral bevel gears from their theoretical 

geometry; the manufacturability can thus be analyzed accord-

ing to the above mentioned tooth surface geometry. 

A suitable pattern draft along the z-axis, of which the unit 

vector vd is (0,0,1), must satisfy 

 

                                                                                  (  ) 

 

where n is the unit normal vector of the tooth surface. For the 

convex tooth surface, according to Eq. (20) and Eq. (38), the 

following formula must work. 

 

    
 

    
                                                                   (  ) 

 

Eq. (39) shows it is impossible to remove the forged part 

from the forging die without any damage if the shape of the 

theoretical convex tooth surface has not been modified, as 

seen in the parametric domain shown in Figure 8. Eq. (39) 

also implies that precision forging technology is only suitable 

for manufacturing spiral bevel gears with a smaller spiral 

angle. However, according to the shape modification of the 

damaged domain and optimization of the contact zone by 

TCA or the function-oriented active design method, it is en-
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Figure 8. Pattern draft limitation for precision forging. 
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tirely possible to manufacture logarithmic spiral bevel gears 

using precision forging technology.  

For the concave surface, the normal vector n should be re-

versed according to the parametric direction. Thus, 

 

    
 

    
                                                                  (  ) 

 

always exists due to              (   )  or 

            (   ). Thus, it is not necessary to 

modify the shape of theoretical concave tooth surface, as 

shown in Figure 8. 

5.2 Multi-axis freeform milling 

In terms of the manufacturing process, in almost all works 

it is assumed that the gears are machined using special types 

of machine tools, such as CNC based hobbing and milling 

machines. However, the kinematic structure and dynamics 

behavior of the CNC based gear manufacturing machine 

tools still inherently differ from the industrial multi-axis mill-

ing machine tools. Although freeform milling by widely used 

industrial multi-axis machines has an obviously lower pro-

duction rate than cutting using special types of machine tools 

for spiral bevel gear manufacturing, in single piece and small 

batch productions, it is advantageous to have a broad range 

of size change due to unnecessary equipment investment, 

especially in the manufacture of substantially large gears 

with diameters of over 1,000 mm. 

Similar to the method used for manufacturing integral im-

pellers, tool path planning is the key to obtaining successful 

results for logarithmic spiral bevel gears with multi-axis free-

form milling. Besides tool interference, we particularly focus 

on the curvature field of the tooth surface coupled with the 

tool path. The tooth surface geometry (in particular its prin-

cipal curvature field), deeply influences its contact mechani-

cal properties. An unsuitable tool path will damage its 

streamline field orientation; the tool path should thus coin-

cide with one of the principle curvature lines of the tooth 

surface. More precisely, the tooth path should be ϕ-curve, 

since ϕ-curve is also a principal curvature line, as shown in 

Figure 9. 

 

6. Conclusions  

 The tooth surface of logarithmic spiral bevel gears is a 

parametric surface defined on a parallelogrammic do-

main. It undoubtedly offers many advantageous geo-

metrical characteristics by differential geometry analy-

sis. Analyzing the tooth surface geometry helps us to 

fully understand its manufacturability and possible kin-

ematic and dynamic behavior in application. 

 Because logarithmic spiral bevel gears cannot be manu-

factured using traditional hobbing and milling ma-

chines, analysis is carried out on their manufacturabil-

ity with precision forging and multi-axis freeform mill-

ing technology. The result shows that tooth surface 

shape modification is inevitable for precision forging. 

However, tooth shape modification can be easily con-

trolled by two simple feature parameters. In addition, 

the curvature streamline should be maintained for mul-

ti-axis freeform milling to obtain a high quality tooth 

surface. 

 In theory, the truly conjugate spiral gears have a line 

contact. More precisely, the line contact is a spatial 

logarithmic spiral. However, in order to decrease the 

sensitivity of the gear pair to errors in tooth surfaces 

and to the relative positions of the mating members, a 

set of carefully chosen modifications must be applied to 

the teeth of one or both mating gears. As a result of the-

se modifications, the logarithmic spiral bevel pair be-

comes mismatched, and a point contact replaces the 

theoretical line contact. Regardless of the method used 

to manufacture the mismatched logarithmic spiral bevel 

gears, such as precision forging and general multi-axis 

freeform milling, the emergent practice challenge is 

how to generate the optimal tooth surfaces of the pinion 

and the gear in order to reduce transmission error. 
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