Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2021.01.003

Dynamic ice force estimation on a conical structure by discrete element method  

Jang, HaKun (LSU Center for Computation and Technology)
Kim, MooHyun (Department of Ocean Engineering, Texas A&M University)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.13, no.1, 2021 , pp. 136-146 More about this Journal
Abstract
This paper aims to numerically estimate the dynamic ice load on a conical structure. The Discrete Element Method (DEM) is employed to model the level ice as the assembly of numerous spherical particles. To mimic the realistic fracture mechanism of ice, the parallel bonding method is introduced. Cases with four different ice drifting velocities are considered in time domain. For validation, the statistics of time-varying ice forces and their frequencies obtained by numerical simulations are extensively compared against the physical model-test results. Ice properties are directly adopted from the targeted experimental test set up. The additional parameters for DEM simulations are systematically determined by a numerical three-point bending test. The findings reveal that the numerical simulation estimates the dynamic ice force in a reasonably acceptable range and its results agree well with experimental data.
Keywords
Ice force estimation; Discrete element method; Parallel bonding method; Simulation vs. experiment; LIGGGHTS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morgan, D., Sarracino, R., McKenna, R., Thijssen, J.W., 2015. Simulations of ice rubbling against conical structures using 3D DEM. In: Paper Presented at the Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions.
2 Gravesen, H., Sorensen, S.L., Volund, P., Barker, A., Timco, G., 2005. Ice loading on Danish wind turbines: Part 2. Analyses of dynamic model test results. Cold Reg. Sci. Technol. 41 (1), 25-47.   DOI
3 Hopkins, M.A., 1992. Numerical Simulation of Systems of Multitudinous Polygonal Blocks. COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH.
4 Hopkins, M.A., 1998. Four stages of pressure ridging. J. Geophys. Res.: Oceans 103 (C10), 21883-21891.   DOI
5 Barker, A., Timco, G., Gravesen, H., Volund, P., 2005. Ice loading on Danish wind turbines: part 1: dynamic model tests. Cold Reg. Sci. Technol. 41 (1), 1-23.   DOI
6 Polojarvi, A., Tuhkuri, J., 2009. 3D discrete numerical modelling of ridge keel punch through tests. Cold Reg. Sci. Technol. 56 (1), 18-29.   DOI
7 Long, X., Ji, S., 2017. The attributes of local ice pressure analyzed by discrete element method. In: Paper Presented at the Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions.
8 Paavilainen, J., Tuhkuri, J., 2013. Pressure distributions and force chains during simulated ice rubbling against sloped structures. Cold Reg. Sci. Technol. 85, 157-174.   DOI
9 Paavilainen, J., Tuhkuri, J., Polojarvi, A., 2011. 2D numerical simulations of ice rubble formation process against an inclined structure. Cold Reg. Sci. Technol. 68 (1-2), 20-34.   DOI
10 Polojarvi, A., Tuhkuri, J., 2013. On modeling cohesive ridge keel punch through tests with a combined finite-discrete element method. Cold Reg. Sci. Technol. 85, 191-205.   DOI
11 Potyondy, D.O., Cundall, P., 2004. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41 (8), 1329-1364.   DOI
12 Tian, Y., Huang, Y., 2013. The dynamic ice loads on conical structures. Ocean Eng. 59, 37-46.   DOI
13 Xu, N., Yue, Q., Bi, X., Tuomo, K., Zhang, D., 2015. Experimental study of dynamic conical ice force. Cold Reg. Sci. Technol. 120, 21-29.   DOI
14 Kujala, P., Riska, K., Varsta, P., Koskivaara, R., Nyman, T., 1990. Results from in situ four point bending tests with Baltic sea ice. August. In: Helsinki University of Technology/Laboratory of Naval Architecture and Marine Engineering, IAHR Ice Symposium (Finland).
15 Liu, L., Ji, S., 2018. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Appl. Ocean Res. 75, 53-65.   DOI
16 Ji, S., Di, S., Liu, S., 2015. Analysis of ice load on conical structure with discrete element method. Eng. Comput. 32 (4), 1121-1134.   DOI
17 Loset, S., 1994. Discrete element modelling of a broken ice field-Part I: model development. Cold Reg. Sci. Technol. 22 (4), 339-347.   DOI
18 Sun, S., Shen, H.H., 2012. Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Reg. Sci. Technol. 78, 31-39.   DOI
19 Yu, B., Wu, W., Xu, N., Yue, Q., Liu, S., 2007. Numerical simulation of dynamic ice force on conical structure. In: Paper Presented at the Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions.
20 Ehlers, S., Kujala, P., 2014. Optimization-based material parameter identification for the numerical simulation of sea ice in four-point bending. Proc. IME M J. Eng. Marit. Environ. 228 (1), 70-80.
21 Ji, S., Di, S., Long, X., 2017. DEM simulation of uniaxial compressive and flexural strength of sea ice: parametric study. J. Eng. Mech. 143 (1), C4016010.   DOI
22 Di, S., Xue, Y., Wang, Q., Bai, X., 2017. Discrete element simulation of ice loads on narrow conical structures. Ocean Eng. 146, 282-297.   DOI
23 Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S., 2012. Models, algorithms and validation for opensource DEM and CFDeDEM. Progr. Computat. Fluid Dyn. Int. J. 12 (2-3), 140-152.   DOI
24 Pradana, M.R., Qian, X., 2020. Bridging local parameters with global mechanical properties in bonded discrete elements for ice load prediction on conical structures. Cold Reg. Sci. Technol. 173, 102960.   DOI
25 Yue, Q., Qu, Y., Bi, X., Tuomo, K., 2007. Ice force spectrum on narrow conical structures. Cold Reg. Sci. Technol. 49 (2), 161-169.   DOI