• Title/Summary/Keyword: Special Cause

Search Result 530, Processing Time 0.022 seconds

Impact of Special Causes on EWMA Feedback Process Adjustment (EWMA 피드백 공정 조정에서 이상원인의 영향)

  • 이재준;전상표;이종선
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.2
    • /
    • pp.183-193
    • /
    • 2003
  • A special cause producing temporary deviation in the underlying process can influence on process adjustment in responsive feedback control system. In this paper, the impact of special causes on the EWMA(Exponentially Weighted Moving Average) forecasts and the process adjustment that is based on the EWMA forecasts are derived. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to evaluate the impact numerically.

INFLUENCE OF SPECIAL CAUSES ON STOCHASTIC PROCESS ADJUSTMENT

  • Lee, Jae-June;Mihye Ahn
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.219-231
    • /
    • 2004
  • Process adjustment is a complimentary tool to process monitoring in process control. Although original intention of process adjustment is not identifying a special cause, detection and elimination of special causes may lead to significant process improvement. In this paper, we examine the impact of special causes on process adjustment. The bias in the adjusted output process is derived for each type of special causes, and average run length (ARL) of the Shewhart chart applied to the adjusted output is computed for each special cause types. Numerical results are illustrated for the ARL of the Shewhart chart, thereupon seriousness of special causes on process adjustment is evaluated for each type of special causes.

Impact of Special Causes on First-Order System Feedback Process Adjustment (First-Order System 피드백 공정 조정에서 이상원인의 영향)

  • Jun, Sang-Pyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • A special cause producing temporary deviation in the underlying process can influence on process adjustment in First-Order System feedback control system. In this paper, the impact of special causes on the forecasts and the process adjustment that is based on the EWMA forecasts are derived for a first-order system. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to confirm the impact numerically.

Average Run Lengths of Special-Cause Control Charts for Autocorrelated Processes (자동상관인 공정에서 Special-Cause CUSUM 관리도의 ARL)

  • Sungwoon Choi
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.243-251
    • /
    • 1995
  • 본 연구에서는 자동상관인 공정의 변화를 빠르게 탐지할 수 있는 Special-Cause CUSUM 관리도를 사용하여 다섯가지 시계열 모델에 대해 다음과 같은 연구를 수행한다. 첫째 ACF와 PACF로 파라미터에 따른 ARL의 변화를 쉽게 해석할 수 있는 방법과 둘째로 독립인 관측값에 적용하는 Hawkins(1992)의 ARL 간략계산법을 자동상관인 공정에서도 사용할 수 있는 기법을 제시하여 기존의 시뮬레이션을 이용한 ARL 계산법에 비해 빠르고도 정확한 값을 구한다. 끝으로 두가지 유형의 평균이동에 대한 ARL 변화를 각각 계산해 보아 그 효과를 비교분석 한다.

  • PDF

Economic Adjustment Design For $\bar{X}$ Control Chart: A Markov Chain Approach

  • Yang, Su-Fen
    • International Journal of Quality Innovation
    • /
    • v.2 no.2
    • /
    • pp.136-144
    • /
    • 2001
  • The Markov Chain approach is used to develop an economic adjustment model of a process whose quality can be affected by a single special cause, resulting in changes of the process mean by incorrect adjustment of the process when it is operating according to its capability. The $\bar{X}$ control chart is thus used to signal the special cause. It is demonstrated that the expressions for the expected cycle time and the expected cycle cost are easier to obtain by the proposed approach than by adopting that in Collani, Saniga and Weigang (1994). Furthermore, this approach would be easily extended to derive the expected cycle cost and the expected cycle time for the case of multiple special causes or multiple control charts. A numerical example illustrates the proposed method and its application.

  • PDF

Design of On-line Process Control with Variable Measurement Interval

  • Park, Changsoon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.319-336
    • /
    • 2000
  • A mixed model with a white noise process and an IMA(0,1,1) process is considered as a process model. It is assumed that the process is a white noise in the absence of a special cause and the process changes to an IMA(0,1,1) due to a special cause. One useful scheme in measuring the process level is to use the variable measurement interval (VMI) between measurement times according to the value of the previous chart statistic. The advantage of the VMI scheme is to measure the process level infrequently when in control to save the measurement cost and to measure frequently when out of control to save the off-target cost. This paper considers the VMI scheme in order to detect changes in the process model from a white noise to an IMA(0,1,1). The VMI scheme is shown to be effective compared to the standard fixed measurement interval (FMI) scheme in both statistical and economic contexts.

  • PDF

Change Point Estimators in Monitoring the Parameters of an AR(1) plus an Additional Random Error Model

  • Lee, Jae-Heon;Lee, Ho-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.963-972
    • /
    • 2007
  • When a control chart signals that a special cause is present, process engineers must initiate a search for and an identification of the special cause. Knowing the time of the process change could lead to identify the special cause more quickly, and to take the appropriate actions immediately to improve quality. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the parameters of a process in which the observations can be modeled as a first-order autoregressive(AR(1)) process plus an additional random error.

  • PDF

The ISO/TS16949 the research regarding the application instance of the development technique for a APQP zero defect attainment (ISO/TS16949 APQP Zero Defect 달성을 위한 개발기법의 적용사례에 관한 연구)

  • Moon, Chan-Oh
    • Management & Information Systems Review
    • /
    • v.22
    • /
    • pp.211-229
    • /
    • 2007
  • The ISO/TS16949 APQP goal of defect prevention and decrease of spread waste, is the customer satisfaction which leads a continuous improvement and profit creation. The quality expense where the most is caused by but with increase of production initial quality problem occurrence is increasing to is actuality. Like this confirmation amendment. with the problem which is forecast in the place development at the initial stage which it does completeness it does not confront not to be able, production phase to be imminent, the problem accumulates and it talks the development shedding of which occurs. In opposition, prediction confrontation. is forecast in development early stage to and it is a structure which does not occur a problem to production early stage. Like this development is a possibility of accomplishing competitive company from production phase. Which attains an goal of, chance cause it leads a APQP activity (common cause) with special cause prevention & detection the connection characteristic of the focus technique against a interaction is important. And the customer requirement satisfaction and must convert a APQP goal of attainment at the key characteristics action step. (1) The Prevention - with Design FMEA application prevention of the present design management/detection, (2) the Detection (prevention/detection) - with Process FMEA application prevention of the present process control/detection, (3) Special Cause - statistical process control (SPC) 4M cause spread removal, (4) Common Cause - statistical process control (SPC) the nothing zero defect which leads the continuous improvement back of spread with application it will be able to attain with application.

  • PDF

A Readjustment Procedure after Signalling in the Integrated Process Control (통합공정관리에서 재수정 절차)

  • Park, Chang-Soon;Lee, Jae-Heon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.429-436
    • /
    • 2009
  • This paper considers the integrated process control procedure for detecting special causes in an IMA(1,1) process that is being adjusted automatically after each observation using a minimum mean squared error adjustment policy. When the control chart signals after the occurrence of a special cause, the special cause will be detected and eliminated from the process by the rectifying action. However, when the elimination of the special cause costs high or is not practically possible, an alternative action is to readjust the process with appropriately modified adjustment scheme. In this paper, we propose the readjustment procedure after having a true signal, and show that the use of the readjustment can reduce the deviation of a process from the target.

Process Improvement in Feedback Adjustment

  • Lee, Jae-June;Kim, Yong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.395-403
    • /
    • 2012
  • Process adjustment, also called engineering process control(EPC), is applied to maintain process output close to a target value by manipulating controllable variables, but special causes may still make the process deviate from the target and result in significant costs. Thus, it is important to detect and mediate deviations as early as possible. We propose a one-step detection method, the moving search block(MSB), with which the time and type of a special cause can be identified in short periods. A modified control rule that can entertain the effects of the special cause is proposed. A numerical example is presented to evaluate the performance of the proposed scheme.