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Design of On-line Process Control with Variable
Measurement Interval |

Changsoon Park!

ABSTRACT

A mixed model with a white noise process and an IMA(0,1,1) process is
considered as a process model. It is assumed that the process is a white noise
in the absence of a special cause and the process changes to an IMA(D,1,1)
due to a special cause.

Omne useful scheme in measuring the process level is to use the variable
measurement interval (VMI) between measurement times according to the
value of the previous chart statistic. The advantage of the VMI schems
is to measure the process level infrequently when in contral to save the
measurement cost and to measure frequently when out of control to save the
off-target cosi.

This paper considers the VMI scheme in order to detect changes in the
process model from a white noise to an IMA(0,2,1). The VMI scheme is
shown to be effective compared to the standard fixed measurement interval
(FMI) scheme in both statistical and econcmic contexts.

Key Words : statistical process control; special cause; white noise; IMA(1),1,1);
expectecd cost per unit time; adjustment

1. Introduction

Statistical process control (SPC) is used to monitor the occurrence of special
causes which make the state of the process change from an in-control state to
an out-of-control state. The most common process model used in SPC is the
Shewhart model defined as, at time t,

Zi =+ (1.1)
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where y; is an unknown process mean and ajs are #d N{0,¢%). The mean p;
is assumed to be gy when the process is in control and py(# po) when out of
control,

Suppose that a process follows a white noise model when in control, while
the process follows an IMA(0,1,1) model when out of control. This model then is
basically different from the Shewhart model since the level of the out-of-control
process is not constant. Here we assume that a special cause makes the pro-
cess level change [rom a constant mean process to a nonstationary process. An
IMA(0,1,1) process, due to its inherent disturbances, takes on different values
in different local segments of time. Box and Kramer (1992), and Montgomery
{1999) have shown that an IMA(0,1,1) model can describe the wandering behav-
ior of the process. Vander Wiel (1996) considered an IMA(0,1,1) process as a
process model, where a step shift in the level Is monitored.

An IMA(0,1,1) model is defined as

Zt = Zt—l + ap — Hﬂt_l (12)

where 8 is a smoothing constant. Let Ay denote the interval length from the start
to the measurement time immediately before the occurrence of a special cause.
Then the mixed model with a white noise and an IMA{0,1,1} can be expressed
as follows.

at, 1ft§..40 .
N, = 1.3
‘ {at—k)\zgihoa.;,iftZAoJrl (13)

where A = 1 — #. The model N; for £ > Ay + 1 is the same as the model Z; in
equation (1.2). We consider in this model that the process is iid in the absence
of a special cause, but a special cause disturbs the process and makes the process
nonstationary. Then the purpose of the control chart is to meagure the process
level and detect changes in the distribution as soon as possible.

In order to detect the occurrence of a special cause the process level is mea-
sured according to a measurement scheme. The standard measurement scheme
which observes the process level at every fixed number of intervals is referred to
the fixed measurement interval (FMI) scheme. In recent years it has been found
that the performance of a control chart scheme can be improved by varying the
sarnpling interval as a function of the control chart statistic. A typical way of
varying the length between two consecutive monitorings is to use a short inter-
val when there is an indication of a possible problem and to use a long interval
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when there is no indication of a problem. This monitoring scheme is referred
to the variable sampling interval (VSI) scheme. A similar approach to VSI is
to use the variable sample size (VSS), and the combination of VSI and VSS is
referred to the variable sampling rates {VSR). Examples of V5I ,VSS, and VSR
are Reynolds et al (1988), Reynolds (1989), Reynolds, Amin and Arnold (1990),
Prabhu, Montgomery and Runger (1994), and Park and Reynolds (1994,1999).

Basically the same scheme as VSI is used here and is referred to the vari-
able measurement interval (VMI) scheme. In this paper, properties of the two
measurement schemes, FMI and VMI, are evaluated in statistical and economic
contexts. Also the performances of two measurement schemes are compared to
each other. We use the term 'measurement’ instead of ‘sampling’ here, since
we just measure the process level rather than taking a number of observations
randomly from a larger number of possible outcomes.

2. Measurement, Schemes : FMI and VMI

The FMI scheme is to measure the process level at every fixed number of
intervals and to give an out-of-control signal if | N¢| > ¢; for a given control limit
¢f. The interval length used in the FMI scheme is denoted as dy.

In the VMI scheme, we first select values of measurement intervals to use. For
administrative convenience, we consider only two values of measurement intervals.
It has been shown by Reynolds{1988) and Park and Reynolds(1994,1999) that
allowing only two values of sampling intervals in the VSI control procedures gives
good performances in statistical and economic contexts.

It is also expected here that allowing only two values of measurement intervals
would give good performances. The two interval lengths are denoted as d; and
dg (dy > dp). At the start of the process and after every false alarm, the shorter
interval ds will be used in order to avoid waiting too long in case of possible
unstable process conditions at the start-up or after each false alarm.

The procedure of the VMI scheme is to measure the process level after d;
intervals if |Ny| < e1 or to measure the process after dp intervals if ¢1 < |Ny| < ¢y
or to give an out-of-control signal if |Ny| > ¢,, for a given threshold limit ¢; ol two
measurement intervals and a control limit ¢,. Let R, denote the interval length
between t-th and (t+1)-st measurements on the condition that there is no signal,
then the measurement interval is expliciltly defined as
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dy, if |Nt| <y
R, = 2.1
! { dy, if c1 < [Ny| < cy. (2.1)

3. Statistical properties of the control scheme

Let My, So, and Fy be the number of measurements, the sum of squared
deviations from the target, and the number of false alarms, respectively, made
during the in-control period. Also let A3, M|, and 51 be the interval length, the
number of measurements, and the sum of squared deviations from the target,
respectively, made during the out-of-control period. We assume that the in-
control period follows a geometric distribution with parameter p,. The in-control
period is usually assumed to follow an exponential distribution in the literature.
A geometric distribution is a discrete analogue of an exponential distribution. A
special cause occurring between the two consecutive measurement times under
the exponential distribution is regarded as occurring on the second measurernent
time under the geometric distribution. We also assume that the in-control process
changes to the out-of-control process immediately at the time that a special cause
occurs.Thus the probability function of 4 is

P(Ag = z) ={1—ps)ps (3.1)

forz=0,1,---.

Let the superscripts f and » dencte application of FMI and VMI schermes,
respectively. Since the interval length and the sum of squared deviations do not
depend on the measurement scheme when the process is in control, we have the
following expressions for the in-control average interval length (AIL) and expected
sum of squared deviations (ESS).

B(af) = By = =2 (32
B(sd) = pspy = 1727 53

The number of measurements depends on the measurement scheme and the
in-control distribution. The in-control average numbers of measurements (ANM)
are obtained as follows(see Appendix A for derivations).
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o d
(M) = l{l(lf——i;%w;. (3.4)
E(Mg) = (L p)® (3.5)

B 1 _pl(l _ps)dl - (1 - pl)(l —ps)dz
where p; = 2®{c¢;) — 1 for the standard normal distribution function ®.

Since the conditional distribution of the number of false alarms given the
number of measurements follows a binomial distribution in which the probability
of success is equal to the type I error probability, the marginal average numbers
of false alarms (ANF) are obtained as follows.

B(F]) = B(M{)o! (3.6)
where af = 2{1 — ®(cs)}.

E(FY) = B(M?)a" (3.7)

where o¥ = 2{1 — ®(¢,)}.

Let 7 be the number of intervals from the My-th measurement to the interval
immediately before the occurrence of a special cause, and Ry, be the inlerval
length from the Mp-th measurement 1o the next. Tn the VMI scheme, then, the

special

start causc .
1 2 M, y Mot M2 signal

e
N 4y * 4 _"]I
| : interval I : measurement

Figure 1 : Diagram of a cycle with intervals and measurements over time.
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interval length from the change of model to the first measurement in the out-
of-control state will be Ry, — 7, on which the out-of-control properties depend.
The joint probability function of Ray, and 7 for the VMI scheme is obtained
in Appendix B. We define a cycle of the process as the time from the start of
the process to the true out-of-control signal. Then the cycle length is equal to
Ap + A1, A cycle of the process is illustrated in Figure 1, where intervals and
measurements as well as 7, Rz, Ag and A, are expressed.

Derivations of expectations of A;, M),and S| are not known theoretically.
Instead, they are derived by simulation methods here. The conditional expecta-
tions of Ay, My,and S given Rpg — 7 are obtained using simulations, and then
the marginal expectations are evaluated according to the joint distribution of
R, and 7.

4. Fconomic properties of the control scheme

The expected cost per unit time is widely used in evaluating the properties of
a control sheme economically. The economic design of a control chart was first
developed by Duncan(1956) and a unified cost model is proposed by Lorenzen
and Vance(1986). In order to improve statistical properties the economic design
with statistical constraints was developed by Saniga(1989) and referred to the
economic statistical design.

In calculating the expected cost per unit time, we need to define cost param-
eters associated with the cycle. We consider the following cost parameters.

Chs @ cost per measurement
Cr : off-target cost in units of o*

Cr: cost per false alarm

Although there are some other time and cost parameters involved in a cycle
of the process for more general economic models, we restrict our study to a model
with the parameters defined here. In most cases, these parameters have important
meanings and others are negligible.

The expected cost per cycle is expressed as

E(C) = CME(MO + M) + CrE{Sy + 51) + CFE(FO). (4.1)
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Then the expected cost per unit time is defined as the ratio of the expected cost
per cycle to the expected cycle length, that is

_ Cpr B(My + Ml) + CrE(Sy + 51) + CrE(Fy)

B(L) B + Ay

(4.2)

5. Comparison of FMI and VMI

The two measurement schemes are compared in statistical and economic con-
texts. Since applying the VMI scheme renders more complexity in administra-
tion, it would be worth considering only if there are substantial improvements in
effectiveness compared to its counterpart, FMI.

In comparing the properties statistically, we usunally set the in-control statis-
tical properties of the two schemes the same and then compare the out-of-control
statistical properties. In accomplishing the in-control properties the same, we
need to set the followings.

fl

E(M]) = B(M),
E(F{) = EB(F).

We also need to make the type I error probabilities of the two schemes the
same. Because the type I error probability depends only on the control limit we
need to set the two control limits the same, that is ¢; = c;. In order to make the

in-control ANMs of the two schemes the same, we have, from equations (3.4) and
(3.5),

-1 (1 _ps)dz - (1 *ps)df
N G e rerers LD B
for dg < dy < dj-

In Figures 2-4, the out-of-control properties of the FMI and VMI schemes
are plotted for some choices of A and ps; when ¢ = 3, df = 5. The in-control
properties are all set equal for the two schemes. The out-of-control properties
are obtained by simulations in which the conditional out-of-control process given
Ry, and 7 is repeated 20000 times. It was shown that the case for dy = 4 is
optimal among cases for de = 1,2, 3,4. Thus the case for dy = 4 is used in plotting
the properties of VMI. The out-of-control properties of FMI are almost the same
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for different values of p,, and thus only A is used in representing the FMI scheme.
The entries of parentheses in the legend of figures ara {p,, A} for VMI and (i) for
FMI.

From all the three figures we can choose values for ¢; so that the VMI values
are less than the FMI values. Thus we see that the performance of the FMI
scheme can be improved substantially by using the YMI scheme. The values
for dy, however, which minimize the three averages are quite different and this
makes it difficult to choose one value for dq. Because of the different behavior
of the three averages with respect to d;, a certain criterion [or determining the
interval length is needed for the optimal performance of VMI. One such criterion
for determining optimal chart parameters is to use an economic model.

We obtained expected costs per unit time in order to compare economic per-
formances of the two schemes. The optimal chart parameters are obtained by
solving nonlinear minimization problems where the expected cost per unil time
is the object function of chart parameters. Since the out-of-control properties can
not be expressed as explicit functions of chart parameters, we use finite difference
approximation to partial derivatives by using simulaled values of the properties.

20 \
18 i - VMI(D.05,0.3)
. ST VMO 005,0.3)
16 - '.: _______ FMio |
1 4_ '\\ ----- - VMI[0.0507)
"N | VMI{0.006,0.7)
12”; o= FMI7)
10
E(M) 8]
6}
4:
2
01 -

I A A e N
6 10 15 20 25 30 35 40 45 50

dy
Figure 2 : Out-of-control ANM for d; =5, ¢p = 3.0; VMI{p,, ), EMI{A).
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Figure 3 : Qut-of-control AIL for d; = 5, ¢; = 3.0; VMI(p,, A), 'MI(A).
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Figure 4 : Oul-of-control ESS for dy = 5, ¢y = 3.0; VMI{p,, A), FMI(A).
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In Tables 1 and 2, the optimal chart parameters of the two schemes such as
dg,dy da and cy,c1,c, are selected to give the minimum expected cost per unit
time. Also the expected cost per unit time as well as the out-of-cantrol properties
are obtained. It is seen that the cost of VMI is always substantially less than
that of 'MI. As the average in-control period increases (that is p, decreases), the
optimal values of ¢f,e1,6, as well as d; increase. In each case the optimal value
of dz 18 equal to 1 which is the smallest possible interval length. As the false
alarm cost increases, the control limit also increases in order to reduce the false
alarm rate. We see that the control limit of VMI, ¢,, is larger than the control
limit of FMI, ¢f, and this makes the false alarm rate of VMI smaller than FMI,

Table 1. Optimal chart parameters and expected cost per unit time
for A\=03,¢*=1,Cr=1

dy cs rrd  EM] | Al | ES]

ps | Cu | Cp | dido| e,eo | BLY | BMY | EBAY | ESY
12 1.640 | 1.890 | 3.583 [ 37.550 | 146.819

50 | 19,1 | 1.552,3.390 | 1.120 | 1.143 | 10.945 | 22.178

1 8 2103 | 2.149 | 6.194 | 46.075 | 210.369

100 | 18,1 | 1.572,3.635 | 1.123 | 1.153 | 10.447 | 21.698

0.005 30 1.000 | 2:067 | 1.790 | 39.573 | 156.695
50 || 30,1 |2.132,3.251 | 1.306 | 1.139 | 17.290 | 40.449

5 22 1.517 | 2.403 | 2.690 | 48.891 | 220.433

100 | 31,1 | 1.860,3.407 | 1.309 | 1.143 | 17.846 | 41.870

13 2.087 [ 1.448 | 2.908 | 57.818 | 309.493

50 || 33,1 | 1.976,4.388 | 1.054 | 1.057 | 17.459 | 38.519

1 8 2600 | 1.582 | 9.137 | 69.604 | 441.896

100 || 31,1 | 2.146,4.847 | 1.054 | 1.062 | 16.468 | 36.338

0.001 30 1590 [ 1.618 | 2.571 | 62.712 | 358.073
50 | 50,1 | 2.602,3.738 | 1.149 | 1.050 | 26.333 | 70.338

5 30 1.835 | 1.761 | 2.949 | 74.059 | 483.197

100 || 50,1 | 2.600,4.641 | 1151 | 1.054 | 26.388 | 72.458
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Table 2. Optimal chart parameters and expected cost per unit time
for A=0.7,0%=1,Cp =1L

dy ey BLf | EMT | BAS | ESS

ps | Car | Cp || di.d2 c1, ¢y EL* | EMY | EAY | ESY
5 2.193 2.055 | 3.896 & 17.489 | 146.679

50 || 10,1 | 2.128,4.016 | 1.180 | 1.155 | 5.893 | 20.627

[ 6 2.393 2.285 | 3.981 | 21.398 | 213.170

100 || 11,1 | 2.021,3.905 | 1.181 | 1.145 | 6.400 | 23.029

0.005 12 1.646 2.518 | 2.104 | 19.808 | 180.298
50 || 18.1 | 2.546,3.804 | 1.487 | 1.120 | 10.183 | 48.192

5 9 2.130 2.806 | 2.910 | 22.219 | 227.018

100 || 17,1 | 2.406,4.216 | 1.492 | 1.126 | 9.650 | 44.757

7 2.600 1.475 | 4.105 | 25.739 | 300.137

50 || 18,1 | 2.367,5.487 | 1.091 | 1.074 | 9.694 | 43.285

1 8 2.603 1.534 | 3.835 | 27.186 | 331.779

100 || 18,1 | 2.800,6.000 | 1.091 | 1.076 | 9.712 | 44.111

0.001 19 1.954 1.759 | 2.096 | 30.850 | 409.296
50 || 31,1 | 3.344,4.607 | 1.256 | 1.051 | 16.346 | 106.871

5 18 2.233 1.861 | 2.358 | 33.977 | 495.507

100 || 31,1 | 2.950,5.276 | 1.256 | 1.053 | 16.348 | 107.132

6. An example of a mixed model with a white noise and an
IMA(0,1,1)

When a process follows an IMA(0,1,1) model due to its wandering behavior,
it will be manipulated by some compensating variables to adjust the process level
close to target. The adjustment is employed by feedback and/or feedforward con-
trol. This approach to process control is referred to engineering process control
(EPC) or automatic process control {APC). Examples of recent works on EPC
are Box and Kramer (1992), Box and Luceno {1994,1997). Recently integration
of SPC and EPC has a great deal of interest since the two procedures are not
divided clearly in modern manufacturing industries. Examples on this topic in-
clude Vander Wiel et al (1992), Montgomery et al (1994}, Janakiram and Keats
(1998), and Nembhard and Mastrangelo (1998).

Suppose that an IMA(0,1,1} process is adjusted by an automatic controller
comtinuously at every interval. That is, an adjustment i1s made at every interval
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automatically. The adjustment made at time ¢ for an IMA(0,1,1) process is
the forecast Et which is the exponentially weighted moving average (EWMA) of
past data. Then the adjusted process will be a sequence of white noise when
the controller works properly. If the controller breaks down {or deteriorates) at
some time during the process, the adjusted process will no longer be a sequence
of white noise. The breakdown of the controller is treated as a special cause,
and states before and after the breakdown are regarded as in-control and out-of-
control states, respectively. When the breakdown of the controller is detected, it
will be replaced by a new one {or fixed) and the adjusted process will go back to
a white noise process.

We assume, in this example, that the information about the process level
used by the controller is not available for use i monitoring of the process. One
possible example of this case is that the adjustment is made automatically as
soon as the controller measures the process level, but there is no such device to
transfer the observed deviation from the target to the operator. Thus we need
to meagure the process level according to a measurement rule with an additional
cost.

Suppose that the process model without adjustment follows an IMA{0,1,1)
model with a smoothing constant . The minimum mean squared error (MMSE)
forecast of the process level at time ¢ is the EWMA defined as

Zy = MZs_1 + O0{Do{ Doz + 00Zy 3 +-- )} (6.1)

where Ap =1 — 8.
If we assume that the process starts on the target, then we have, from equa-
tions (1.2) and (6.1),

-1
Zg = a + )\[] Z yq (6.2)
=1
and
" t—1
Zi=X . (6.3)
=1

When the process is in control, that is, when the controller works properly,
the compensation will be the same as Z; in (6.3). On the other hand, when the
controller breaks down, the process can not be adjusted properly and thus the
adjustment will not be the same as (6.3). Here we assume that the controller in
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the presence of a special cause consistently underadjust the process. Thus it is
assumed that the adjustiment in the presence of a special cause is as the following.

i—1 Ap—1
= Ay Z a; + Ag Z en (6.4)
i=Ap =1

for ¢ > Ag +1 and 0 < A; < Ag. Then the adjusted process regulated by its
compensating variable will be Ny = Z; — Z; and can be expressed the same as
(1.3) for A = Ag—A[. The case for A; = 0 means that the controller stops working
completely. When this happens the control action is constant and the problems
with the controller can be easily detected by looking at the contral action. Then
there is no need to look at the process output and we exclude this case from our
study.

Ii is seen that the adjusted IMA(0,1,1) process is a mixed model with a
white noise and an IMA(0,1,1) processes. Thus the control procedure reduces
to detecting changes of process model from a white noise to an IMA(0,1,1). In
most process control procedures where adjustments are made by an automatic
controller, the adjustment cost is negligible. Thus we set (4 = 0.

7. Conclusion and Remarks

In this paper, a mixed model with a white noise and an IMA(0,1,1) is con-
sidered as the process model. The purpose of the control procedure is to detect
changes in the model as soon as possible.

In detecting the occurrence of a special cause, the two measurement schemes
(FMI and VMI} are applied and their properties are obtained for comparison. Tt
was shown that the performance of the VMI scheme is substantially better than
that of the 'MI scheme both in statistical and economic contexts.

The VMI scheme is designed to monitor infrequently when the process is in
control and to monitor more frequently when out of control. The VMT scheme is
especially useful when the use of long intervals does not produce much increase
in the off-target cost while the process is in control, compared to the use of
short intervals. Also VMI is useful when the gain in the off-target cost due to
frequent measurements will be large enough to compensate for the increase in the
measurement cost when the process is out of control.
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The idea of VMI can be applied to more general problems of detecting changes
i the process model from in-control to out-of-control. In these problems the
VMI scheme will also be effective if deviations from the target when in control is
stochastically smaller than those when out of control, so that long measurement
intervals may be used to save the measurement cost when in control and short
intervals may be used to save the off-target cost when out of control. The study
of general cases is left for further research.

APPENDIX

Appendix A: Derivations of E(a) and E(MY).

The in-control average number of measurements can be derived by using a
Markov chain approach. The state of a Markov chain is defined at each mea-
surement time during an in-control state according to the next interval length
and the control state of the next measurement time. Let V; denote the state of a
Markov chain at i-th measurement time as follows.

Vi=1if R, = d; and the process is in control at the (i + 1)-st measurement
time.

Vi =2 it R; = da and the process is in control at the (i + 1)-st measurement
time.

Vi = 3if R, = d, and the process is out of control at the (i+1)-st measurement
time.

Vi = 41t R; = dy and the process is out of control at the (i41)-st measurement
time.

The conditional probability of ¥; = 1 given V,_; = 1 is obtained as Pr(V; =
1|Vie1 = 1) = p1(1 — p,)™ and the other conditional probabilities are obtained
similarly. Note that V; is independent of V;_,.Thus the transient state transition
matrix 1s obtained as

Pl =ps)® ol —p)® pr{l—(1-ps)B} pafl — (1 -p,)%)}

q=| P -p)® pl—p)® pi{l-(L-p)h} pfl—(1—p,)%}
0 0 0 0
0 0 0 0
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where p2 = 1 — p1. Note that we use the short interval do after each false alarm.
Since the short interval dy is used at the start, we have the starting state
probability vector,

s’ = (0, (1 —p)®, 0, 1 (1~ p,)%).

Using the transition matrix and starting state vector we have the probability
function of My, for z > 1,

Pr(My ~v) ~ SQ(I-Q)1
= (-p)tL— e

for a unit vector 1 and e = 1 — py(1 — ps)® — po{l — ps)%. Note that e is the
probability of going to states V, = 3 or 4 from states V, = 1 or 2. Thus the
in-control ANM is obtained as

B(M{) = §QI-Q) 1

{1 ﬁPS)di\
—

If we put dy = dy = dj in (3.5) we have the equation (3.4).

Appendix B: Derivation of the joint probability of Ry, and 7.

The conditional probability of 7 given Rz, and Mg is obtained as follows.
Fory=d;,ds, =0,1,---,y—1,and k > 1,

(1 —ps)™ps

1—(1—pg¥
Also, the conditional probability of Rz, given Mp > 1 is obtained as follows. For
y=di,dy, and k > 1,

Pr(r = z|Rpg ==y, My = &) =

Pr(Ra, =y, Mo = k) = (1 ps)® (1—e)* " {1- (1—-ps)* Hpi (g, () + D21,y ()}

where Izy{y) =1 iy =z, and = 0 if y # 7. Thus,
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Pr(RMu = y|Mﬂ = k) = Pr(RMo =y, My = k)/Pr(MO = k)
{p1la (v) + palig () H1 — (1 — ps)¥} |
e

Hence the joint probability function of Rpy, and 7 given My > 1 is, for z =
0,1,---,y—Land & > 1,

Pr(r = o, Bp, =y|lMo=k) = Pr(r ==|Ruy, =1, My =k)-Pr(Ry, = y|My = k)
gy (W) + podiay (W) HL — ps)¥ps

=4

Since the process starts with the short interval ds, we have the following
conditional probability given My = 0. For z =0,1,--- ,y — 1,
(1 - ps)w}ns

P{r=z,Bm, =y|My=0) = mf{dg}@)-
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