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Average Run Lengths of Special-Cause
Control Charts for Autocorrelated Processes
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1. Introduction

Traditional Statistical Process Control(SPC) assumes that consecutive observations
from process are iid. Often in industrial practice, however, in continuous as well as
discrete production processes, observations are actually autocorrelated. The effect of
autocorrelation has been studied for several types of control charts. Johnson et al.(1974)
and Yashchin(1993) have considered the effect of autocorrelation on CUSUM charts. Their
studies show that as parameter value #(8;) increases in AR(1) model (MA(1) model), ARL
decreases(increases). Maragas and Woodall(1992) have studied the effect of autocorrelation
on the X-chart. It is shown that presence of positive(negative) parameter #(6;) in AR(1)
model (MA(1) model) results in an increased number of false alarms from the control chart
(ie. type I error a increases) and negative(positive) parameter #(&) in AR(1) model (MA(1)
model(1) can result in unnecessarily wide control limits such that significant shifts in the
process mean may go undetected (i.e., type II error @ increases).

* Dept. of Industrial Engineering, KyungWon University



244 A&

If autocorrelation is present and cannot be removed, then the usual interpretation of
points outside standard control chart limits can be misleading. In this situation the
approach taken by Alwan and Roberts(1988) is recommended. They introduced two charts,
which they referred to as the common-cause control chart and the special-cause control
chart. The common-cause chart as a plot of forecasted values that are determined by
fitting the correlated process with an ARMA model, according to the procedures developed
by Box et al.(1994). The special-cause chart is a traditional chart of residuals (ie., the
difference between the actual process values and their forecasts). English et al.(1991)
suggested a similar approach using the residuals from Kalman filtering. This approach
using state-space model allows a very general description of the stochastic and
deterministic components of the noise processes as they appear as the system output
(Goodwin et al.(1984), Goldsmith et al.(1971), Johnson et al.(1974), Harris et al.(1991)). This
chart is used in traditional ways in detecting process deviations of any kind.

The ARL is the average number of observations required to obtain an observation
outside of the control limits for a given shift in the mean. We normally desire the ARL to
be large when no assignable cause has occurred and small when one has occured. Some
tables and graphs of the ARL are given in Lucas(1976). These provide the in-control and
out-of control ARL of CUSUM charts with a range of reference values k=0.25 to 1.5, with
the range of decision intervals h varying with k. While these tables are valuable for the
ARL's corresponding to actual entries, their design is less than ideal in several respects.
First, they cover a limited range of k and h values. Second, the spacings between the
tabled values is quite large, which creates problems for evaluation the ARL for parameter
values not explicitly listed. Other approaches involved substantial computations. Hawkins
(1992) presents a relatively simple yet very accurate (typically within 3%) approximation
for the ARL of a CUSUM chart, both when the process is in control and when it is out of
control. )

Harris and Ross(1991) investigated the effect of autocorrelation on the performance
of a chart similar to the special-cause chart plots the CUSUM of residuals. They
determined a simulated ARL for the CUSUM procedure when the process evolves
according to an AR(1) model for various values the AR parameter, concluding that residual
analysis is insensitive to shifts in the mean when the process is positively autocorrelated.
Wardell et al.(1994) showed that the ARL and SRL of the special-cause control chart in
ARMA(1,1) model are relatively smaller when the process is negatively rather than
positively autocorrelated. In some instances they recommended the use of conventional
control charts because they are at least as good, and often better in terms of ARL when
the process is positively autocorrelated and are much easier to implement.

This paper suggests an alternative method which leads to easily computable
approximations for ARL of special-cause CUSUM control charts for autocorrelated
processes. The basic idea involves replacing a ARL approximations for iid. sequence
(Hawkins 1992) by same ones for the residuals of serially correlated sequence. In section 2,
we introduce a Hawkins’'(1992) approximation for ARL when the process is ii.d.. In section
3, for the five time-series models we present new techniques to identify the impact of
parameters on ARL using ACF and PACF, and a fast accurate approximation for ARL of
special-cause CUSUM control charts, and -two types of mean shifts as the assignable
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cause to be detected. Finally in section 4, we summarize and discuss possible research
extensions.

2. ARL for iid Observations

Hawkins(1992) provides a computationally simple but accurate approximation for the
ARL of CUSUM control chart. The starting point of the work was a closely-spaced table
of ARL values. The table covered h values from O to 9 in steps of 0.5 and k values from
-2 to 3 in steps of 0.125

The basic method for using this model as follows.
(i) For the selected h and k values obtain the necessary values of G, 7, 7, @, &, and
& tables.

(ii) Using the values obtained in (i), compute Y = a@s + Bs + Cae+ Ennh

(iii) Obtain ARL = m using a table or algorithm for the cumulative normal.

The ARL when the data depart from control is also of interest. In control, the data
follow a N(z ¢ distribution. Let us suppose that the mean and/or the standard deviation
change. Specifically, suppose that the distribution of x; changes to N(u+4o, ), Writing

the standardized quantity U; = xi;# as Ui = 4+ ¢ W, where W;~N(0, 1), the cumulative

sum of Uj can be expressed in terms of the Wi. The ARL of an L(L") CUSUM chart
using the Uj is the same as the in-control ARL of a CUSUM chart with reference value
J?—:—A (J?—:—A), decision interval %
2.1 Mean Shifts

The in-control mean is 1,000 and the standard deviation is 50. For exactly normal
data with no perturbation, ARL for a representative CUSUM scheme using k=0.250 and
h=6 has an approximately 120.

Suppose that the standard deviation remains fixed and the mean changes by 12.5;
25; 50. The one-sided ARL's for detecting these upward shifts can be obtained.

Shift 125 25 50
4 0.250 0.500 1.000
Altered k 0 -0.25 -0.75
ARL 50.8 21.1 87
FIR ARL 38.2 134 6.0
Lucas’ ARL 53 20 8.6

22 Mean Shifts With Group Means
A question often asked about CUSUM charts is whether one should plot individual
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observations or group means. Consider the problem discussed in 2.1 with group of size
four. Evaluating the ARL for the three shifts of interest results in the following.

Shift 125 25 50
Y/} 0.500 1.000 2.000
Altered k -0.25 -0.75 -1.75
ARL 21.1 87 41
FIR ARL 12.4 6.0 2.4
Lucas’ ARL 20 8.6 3.0

2.3 Simultaneous Shifts in Mean and Standard Deviation
We evaluate the response of the CUSUM chart to a simultancous change in mean
and standard deviation. Suppose that the process mean shifts to 1,040, and the standard
deviation decreases to 35. In the general formulation these correspond to shifts of 4=0.800
and 7=0.7. To get the ARL of the conventional CUSUM chart, we use reference value
0—7 = —(.786 and decision interval —0—67 = 8,57. Entering these values into
the program gives the ARL as 11.5 for a conventional CUSUM chart and 6.4 for a FIR
CUSUM chart.

2.4 Standard Deviation Shifts
To investigate the -out-of-control performance of a scale CUSUM chart, suppose

that the standard deviation of the original x; changes by a factor of p, while the mean
remains fixed. Then,

U; = xi;# ~p MO, 1)

VU; ~ Vo N(0.822, (0.349)%)
= N(0.82V 0 , (0.349)* o)

and
v VIOI-082  M0.8220/p —1). (0.349)" o)
i 0.319 0.349

= N(2.355(Vo —1),0)
The performance of the scale CUSUM chart can, therefore, be checked using the general

formula with 4 = 2.355(Vo —1) and ¢ =Vo .

Shift 100 150
o 141 173
r 119 1.32
4 0441 0.743
Altered k -0.161 -0.373
Altered h 50 45
ARL 215 . 117
FIR ARL 14.7 74




ARSI AL HTI8 364 19964 12)] 247

Hawkins(1981) shows that on increase in ¢ leads to better performance than a decrease of
the same magnitude. This is a highly desirable property in practice. Since one is normally
concermned much more about an incrcases in ¢ than a decrease.

3. ARL for Serially-Corrclated Observation
3.1 Impact of Parameters on ARL Using ACEF and PACF
In a stationary autoregressive process of order p, @ can he represented as a finite
weighted sum of previous Z as an infinite weighted sum

Z; = ¢_l(B) 7

of previous @. Also an invertible moving average process of order ¢, ZZ can ¢ represented
as a finite weighted sum of previous a: as an infinite weighted sum
7] _I(B)Z; = ay

of previous Z .

The finite MA process has an ACF pr is zero beyond a certain point, but since it is
equivalent to an infinite AR process, its PACF ¢ is infinite in extend and is dominated
by damped exponentials and/or damped sine waves. Conversely, the AR process has a
PACF du that is zero beyond a certain point, but its ACF p; is infinite in extend and

consists of a mixture of damped exponentials and/or damped sine waves. The spectrum of
a MA process has an inverse relationship to the spectrum of the corresponding
autoregressive process.

For the AR process, the ACF can be computed from Z Because autocorrelation is

a source of variability, in case the ACF is damped sine waves, serially-correlated
observations are unstable, so ARL is smaller than the other case. Similarly, for the MA
process, the PACF can be computed from a:. In case the PACF is damped sine waves,
noise components are random white, so ARL is greater than the other case.

As shown in Figure 1, the ACF decays exponentially to zero when ¢ is positive,
but decays exponentially to zero and oscillates in sign when @ is negative. ARL of ¢#<0 is
smaller than the one of #>0. Contrary to its ACF, which cuts off ofter lag 1, the PACF
of a MA(1) model tails off exponentially in one of two forms depending on the sign of 61
If alternating in sign, it begins with a positive value; otherwise, it decays on the negative
side, as shown in Figure 2. ARL of ;<0 is greater than the one of 6;>0. As shown in
Figure 3, in region 1, the ACF remains positive and, in region 2, alternates in sign as it
damps out. The ACF is a damps sine wave in region 3 and 4, the phase angle being less
then 90° in region 4 and lying between 90° and 180° in region 3. ARL is small in order of
region 2, 4, 3. As shown in Figure 4, in region 2, 3, 4, the PACF represents a damped
sine wave, so ARL is great in order of region 2, 3, 4. As shown in Figure 5, exponential
decay(ACF) is smooth if ¢ is positive and alternates in @ is negative. Furthermore, the
sign of p; is determined by the sign of (¢ - &;) and dictates from which side of zero the
exponential decay(ACF) take place. When &, is positive it is dominated by a smoothly
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damped exponential(PACF) which decays from a value of o, with sign determined by the
sign (¢ - &). Similarly, when & is negative, it is dominated by an exponential which
oscillates as it decays from a value of g, with sign determined by the sign of (& - 6)).
ARL is the smallest in region 3.
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3.2 ARL of Special-Cause CUSUM Control Charts
To compute the ARL, we consider a selected set of numerical results for typical
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time series model assuming that the random error terms, @, are normally distributed with
mean 0 and variance of, We choose five time series model to shown the effects of both

the AR and MA parameters. The standard deviation of the observation is dependent on the
model parameters and the standard deviation of the error terms as follows;

AR(1) 0z = 0, li(ﬁ%
MA(1) az= 0,( 146

_ 1-¢, 1
AR(2) 0z = O'a“( 1+¢, ) (1+¢2)2_¢¥

MA(2) az= o,{1+6:+65

5 1-2¢,6,+ 6
a 1 _ ¢%

where oz is the standard deviation of the observations

Suppose a:~ N(0,1® and ARL= 120, k=0.250, h=6. we can use the same
methodologies like 2.4 to compute ARL.

ARMA(Q,]) 0z =

ARQ) :¢; = -0950 | ARMA(LL) : gj Z o5
o 179 2.14
r 134 146
4 0.79% 1.090
Altered k ~0.407 ~0575
Altered h 45 40
ARL 109 75
FIR 70 43

3.3 Two Types of Process Mean Shifts
The shifts are measured in terms of the standard deviation of the observations o2z

and the error terms a,.
In case the shifts are measured in terms of gz (i) obtain altered k and h by using

the same methodologies like 2.4 and (ii) compute ARL approximations according to o0z

shifts like 2.1.
Consider the AR(1) : ¢; = -0.950 model discussed in 3.2.
AR(1) : ¢ = -0950, a ~ N(0, 19
(i altered k : -0.407 altered h : 45
(ii)



250 A&

0z shift 3.20 4.80
4 1.0 1.5

k -1.407 -1.907
ARL 3.9 3.0
FIR ARL 2.3 1.8

In case the shifts are measured in terms of g, (i) obtain altered k according to g,
shifts by using the same methodologies like 2.1 and (ii} compute ARL approximations like
24.

AR(D) : ¢ = 0950, a ~ N(O, 1)

(i) Jg shift : 10 15
4 .10 15
altered k : -075 -1.25
(i)
4 -1.154 -1.527
k 45 4.5
ARL 47 36
FIR ARL 28 22

When to use the shifts of the standard deviations of the observations ¢z rather

than that of the standard deviations of the error terms ¢, ARL is smaller. It can be -
extended to investigate other types of shifts, including ramping shifts (i.e., gradual shifts in
which the mean slowly increases and decreases to its new value), square impulses (in
which the mean steps up to a new value for a time but then moves back down), and
cyclical variations.

4. Conclusion

In this paper, we develop an efficient method which leas to easily computable
approximations for ARL of special-cause CUSUM control chart for autocorrelated
processes. These results show that for the AR(1) model the ARL is relatively smaller
when #<0 rather than #>0 and for the MA(1) model the ARL is greater when 6;<0
rather than 6;>0. These facts can be also identified from the shapes of autocorrelation
function and partial autocorrelation function. When to use the shifts of the standard
deviation of the observations rather than that of the standard deviations of error terms,
ARL is smaller.

This paper can be applied to monitor engineering process control problem to
consider a systematic feedforward-feedback corrective action that will reduce the process
deviation from the target.
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