Power prediction is critical to improve power efficiency in Smart Grids. Markov chain provides a useful tool for power prediction. With careful investigation of practical power datasets, we find an interesting phenomenon that the stochastic property of practical power datasets does not follow the Markov features. This mismatch affects the prediction accuracy if directly using Markov prediction methods. In this paper, we innovatively propose a spatial transform based data processing to alleviate this inconsistency. Furthermore, we propose an enhanced power prediction method, named by Spatial Mapping Markov-Difference (SMMD), to guarantee the prediction accuracy. In particular, SMMD adopts a second prediction adjustment based on the differential data to reduce the stochastic error. Experimental results validate that the proposed SMMD achieves an improvement in terms of the prediction accuracy with respect to state-of-the-art solutions.
본 연구에서는 유역의 공간상관성을 고려한 다지점 일단위 강수량을 동시에 모의할 수 있는 일강수량 모의기법을 개발하였다. 기존 Hidden Markov Chain Model(HMM)은 단일지점 강수모의에 적용되어 왔으나 관측지점간의 유역상관성을 충분히 고려하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 Chow-Liu Tree (CLT) 모형을 적용하여 다변량(multivariate) 형태로써 유역내에 위치한 강우관측소간의 상호종속성을 고려하기 위하여 기존의 동질성 HMM 강우모의기법과 CLT 알고리즘을 결합한 동질성 CLT-HMM 모형을 개발하였다. 본 연구에서 개발된 동질성 CLT-HMM 모형을 사용하여장기간의수문자료를보유하고있는기상청산하의한강유역강수네트워크에대해서 적합성을 검토하였다. 동질성 CLT-HMM 모형을 적용하여 모의된 결과를 보면 일강수량의 계절적 특성뿐만 아니라 일강수량모의 시 강수시계열의 통계적인 특성들까지 우수하게 모의하였다. 추가적으로 상관행렬(correlation matrix)을 이용하여 기상관측소간의 공간상관 재현성을 검토한 결과 관측지점들 사이의 공간상관성도 비교적 우수하게 재현하는 것을 확인할 수 있었다.
본 연구는 대구시를 사례로 셀룰라 오토마타-마르코프(Cellular Automata: CA-Markov) 모형을 활용하여 개발제한구역 유지 및 해제 시나리오별 2020년의 녹지를 예측하고, 토지피복 변화탐지기법 및 공간메트릭스를 이용하여 2009년과 2020년간 녹지의 공간적 변화를 분석하였다. 먼저, 마르코프 체인(Markov chain) 모형을 이용하여 1998년과 2009년의 환경부 토지피복도에 기초한 토지피복변화의 전이확률을 도출하였다. 마르코프 전이확률을 보다 현실에 가깝게 보정하기 위하여 대구시 녹지의 공간적 변화에 영향을 주는 제약요인을 선정하여 다기준 평가(Multi-Criteria Evaluation: MCE)를 통해 적합성 지도(suitability map)를 제작하였다. 최종적으로 마르코프 전이확률과 적합성 지도를 셀룰라 오토마타 모형과 결합한 CA-Markov 모형을 적용하여 개발제한구역의 해제 유무에 따른 두 가지 시나리오에 기반을 두고 2020년의 토지피복을 예측하였다. 모형의 타당성은 2009년의 예측된 토지피복도와 2009년의 실제 토지피복도를 비교하여 산출된 Kappa 계수로 검증하였다. 예측된 토지피복 가운데 녹지만을 대상으로 녹지피복변화를 탐지하고 이동창 샘플링을 적용한 공간메트릭스를 산출하여 2009년과 2020년간 녹지의 공간적 변화를 분석하였다. 분석결과에 따르면, 현재의 도시화 추세가 지속되고 개발제한구역이 유지되는 경우, 달성군, 달서구의 성서, 동구의 안심, 북구의 칠곡 등과 같은 교외 지역에서 2020년에 녹지의 파편화(fragmentation) 현상이 뚜렷하게 나타나는 것을 알 수 있었다. 개발제한구역이 해제되는 경우, 개발제한구역 경계 주변부에서 녹지의 파편화가 나타나는 것을 알 수 있었다. 따라서 미래 대구시의 지속가능한 녹지관리를 위해서는 이러한 공간적 변화 양상을 충분히 고려하여 체계적인 모니터링을 실시할 필요가 있다.
본 연구는 사후분포를 예측하는 베이지안 추정기법의 일환인 마르코프 체인 모형을 적용하여 직업요인 인구이동에 따른 직종별 취업자의 공간적 분포에 나타나는 변화를 예측하였다. 이를 위해 인구이동의 사유 중 직업요인 이동량을 추출하여 직업을 요인으로 하는 인구이동 패턴을 파악하고, 직업요인 인구이동의 추이확률 산출 값을 토대로 채프만-콜모고로프 방정식을 구축하여 장래 지역별 취업자 분포와 직종분포의 변동성을 예측하였다. 분석결과, 서울의 취업자 분포가 감소할 것으로 예측되나 직종 중 단순노무 종사자는 증가할 것으로 예측되었다. 전문가 및 관련 직의 경우 수도권과 일부 광역시를 제외한 모든 지역에서 증가할 것으로 추정되었고, 강원, 충청지역은 전체 직업군의 취업자 분포에 있어 증가세를 나타낼 것으로 예측되었다. 본 연구 결과는 향후 지역 노동시장의 원활한 인력수급이 가능하도록 유입, 유출될 가능성이 높은 인력 및 직종을 중심으로 직업훈련, 취업알선 등 고용지원 서비스를 통해 사전 대비하는 방안 마련에 기초자료로 활용될 수 있다.
토지이용 분류 체계상에서의 종류라는 개념은 토지이용 변화의 분류 체계성에 그대로 적용시킬 수가 있다. 본 연구에서는 선형 판별 함수를 원용하는 최우법(Maximum likelihood method)으로 산출되는 토지이용분류의 공간적 결과와 Markov 전이 행렬 방법으로 산출되는 정량적 결과가 상호 보완하는 의미에서 합성모형으로 통합되었다. 본 연구에서는 다변수 판별 함수의 계산법과 Markov 연쇄행렬 계산법에 관하여 토의되고 그 합성 모형을 대상 지역에 실제 적용하여 그 결과 '90년, '95년 토지이용도가 예측 작성되었다. 모형화의 문제 및 예측의 정확도 역시 더욱 토의 되어야 하며 추후 개선의 여지를 남긴다.
본 연구에서는 마코프 연쇄에 근거하여 지점간 공간상관을 적절히 고려할 수 있는 일강우의 다지점 모의 발생 방법을 제안하였다. 유역 내 여러 지점 대표지점을 선정하여 강우의 발생의 간단한 1차 마코프 연쇄에 의해 모의되도록 하였고 강우강도는 과거자료에서 무작위하게 추출하는 방법을 적용하였다. 지점간 공간상관은 모든 지점에 대해 강우강도가 대표지점과 같은 시점의 것이 일관되게 선택되도록 함으로서 그대로 유지시킬수 있었다. 모의된 일강우자료는 평균, 분산이나 평균 무강우일수, 강우일수 등의 강우 특성은 잘 재현함을 알 수 있었으나, 원자료의 군집특성(시간축에서의)은 상대적으로 약화되어 1일 지체 상관계수가 원자료의 경우보다 작게 나타나고 있으며 아울러 평균 강우지속일수 및 무강우지속일수, 강우-강우 확률 및 무강우-무강우 확률이 원자료의 그것보다 약간 작게 나타남을 파악할 수 있었다. 그러나 이러한 단점은 유역을 대표할 수 있는 지점을 적절히 선택함으로서 또한 대표지점에 대한 강우발생의 상태를 무강우-강우에서 좀더 세분화함으로서 어느 정도 보완할 수 있을 것으로 판단된다.
본 연구에서는 기존 연쇄 말콥체인(Coupled Markov Chain, CMC) 확률식의 연산 경직성을 개선하기 위하여 일반화 된 2차원 연쇄 말콥체인(Generalized Coupled Markov Chain, GCMC) 확률식이 개발되었다. 또한 개발된 확률식에 근거하여 평면상에서 무작위적으로 분포하는 참조정보를 효율적으로 활용하는 연산 알고리듬이 개발되었다. 개발된 모델은 대안적 지구통계 기법으로의 새로운 기능성을 제시한다. 본 연구를 통해 새롭게 개발된 GCMC 확률식은 기존 CMC 확률식에 비해 보다 유연한 참조 정보 활용 가능성을 가지며 특수한 경우로 기존 CMC 확률식이 유도되었다. 또한 순차적 연산의 인위적 오류 발생 기능성 및 실제 야외 데이터의 낮은 빈도를 고려하여 무작위로 추출된 위치에서 각 범위를 이용한 연산 알고리듬이 제안되었다. 개발된 모델은 가상의 2차원 토양도에 적용되었으며 기존 지구통계 기법인 SIS에 비하여 손색이 없는 새로운 지구통계 기법으로 토양 및 지질을 포함한 다양한 예측에 이용 될 수 있는 가능성을 보였다. 낮은 빈도로 샘플링 된 지시자에 대해서는 기존 지구통계 기법과 마찬가지로 저평가되는 현상을 보였으며 이를 보완하기 위하여 다양한 소스의 데이터 융합 등을 바탕으로 한 계속적인 연구가 요구된다.
본 논문의 목적은 ENSO의 영향에 의한 우리나라 강우의 확률빈도와 공간분포 특성을 분석하는 것이다. 따라서 우리나라 기상관측소의 강우량 자료를 Warm(El Nino), Cold(La Nina), Normal 에피소드에 따라 기간별로 분류하였다. 또한 이렇게 분류한 자료는 Markov Chain 모형을 이용하여 100년의 자료로 모의 발생하였고 에피소드별로 빈도분석을 실시하였다. 빈도분석 결과 에피소드에 따라 각 기상관측소별로 강우의 크기에 영향을 미치고 있음을 알 수 있었다. 또한 군집분석을 실시하여 각 에피소드의 공간적인 영향에 대해서 분석하였다. 결과적으로 Warm(El Nino), Cold(La Nina) and Normal 에피소드로 대표되는 ENSO는 우리나라 강우의 확률빈도과 공간분포에 크게 영향을 미치는 것으로 파악되었다.
In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.
While the competitiveness of small and medium sized cities has become important for balanced development at the national scale, they have experienced continuous decline in population and employment, particularly those in non-capital regions. In addition, some of small and medium sized cities have been classified into shrinking cities that have declined due to their long-term structural reasons. To address these issues, a regional approach, by which a hub city and its surrounding small and medium sized cities can collaborate has been suggested. Given this background, the purpose of this study is to identify and delineate hub cities and their impact areas by using travel data as a functional network index. This study uses a centrality index to identify the hub cities of small and medium sized cities and Markov-chain model and cluster analysis to delineate regional boundaries. The mean first passage time (MFPT) generated from the Markov-chain model can be interpreted as functional distance of each region. The study suggests a methodological approach delineating the boundaries of regions incorporating functional relationships of hub cities and their impact areas, and provides 59 hub cities and their impact areas. The results also provide policy implications for regional spatial planning that addresses appropriate planning boundaries of regions for enhancing the economic competitiveness of small and medium sized cities and ensuring services for shrinking cities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.