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Abstract – Power prediction is critical to improve power efficiency in Smart Grids. Markov chain 
provides a useful tool for power prediction. With careful investigation of practical power datasets, we 
find an interesting phenomenon that the stochastic property of practical power datasets does not follow 
the Markov features. This mismatch affects the prediction accuracy if directly using Markov prediction 
methods. In this paper, we innovatively propose a spatial transform based data processing to alleviate 
this inconsistency. Furthermore, we propose an enhanced power prediction method, named by Spatial 
Mapping Markov-Difference (SMMD), to guarantee the prediction accuracy. In particular, SMMD 
adopts a second prediction adjustment based on the differential data to reduce the stochastic error. 
Experimental results validate that the proposed SMMD achieves an improvement in terms of the 
prediction accuracy with respect to state-of-the-art solutions. 
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1. Introduction 
 
Electricity power has become an indispensable part in 

our daily life [1-5]. In recent years, increasing electricity 
consumption has caused terrible power shortage and brings 
a lot of inconvenience to the citizens. One reason is that 
traditional grid uses a rigid system with many deficiencies 
[6, 7], including: (i) the power transmission process is lack 
of flexibility; (ii) the self-recovery capability is low and its 
duration is long; (iii) the electric services only support 
simple user operations; (iv) information sharing is largely 
limited. These defects are becoming more and more 
obvious so that the grid is hard to constitute a real-time and 
efficient power system. 

Smart Grid is a new type of modern power grid, which is 
formed by advanced information communication technology, 
sensing technology, analysis technology, decision technology 
and automatic control technology [8-10]. Different from 
the traditional ones, Smart Grid is featured by using two-
way digital communications to control electric appliances 
at homes. Hence, it can save energy, reduce costs and 
increase reliability and transparency when delivering 
electricity from suppliers to consumers [11-13]. The 
concept of Smart Grid is originated in the United States, 
which announced that they would invest more than 40 
billion dollars to promote grid modernization. Nowadays, 
Smart Grids have been promoted by many governments as 
a way of addressing energy independence, global warming 
and emergency resilience issues [37]. Hence, smart grids 
become more and more ubiquitous. Fig. 1 illustrates the 

ubiquitous smart grids applications. 
Electricity supply management is a key factor to 

guarantee the stable electricity in Smart Grids. The 
electricity prediction is the foundation for the electricity 
power management in Smart Grids [14-18]. The prediction 
accuracy will directly affect the effectiveness, reduce 
electricity costs, ensure the normal production, and 
improve economic benefits effectively. There are various 
available forecasting methods for power data in Smart Grid, 
such as trend extrapolation forecasting (TEF), regression 
analysis forecasting (RAF), artificial neural network 
forecasting (ANNF), gray theory forecasting (GTF), time 
series forecasting (TSF), wavelet analysis forecasting 
(WAF) and so on. Recently, many researches have studied 
different kinds of mathematics models for the electricity 
prediction [32]-[36]. These works make great contributions 
to improving prediction accuracy in Smart Grids. However, 
due to complex stochastic property of power consumption, 
real-time power monitor and prediction is still a 
challenging task in Smart Grids. 
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Fig. 1. Ubiquitous applications in smart grids 
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Markov prediction model is widely used to predict a 
process satisfies the Markov property. However, with an 
investigation of practical power consumption datasets, our 
former work found that not all power consumption data is 
well fitted with the Markov stochastic property [19]. If 
directly using the Markov model, the prediction accuracy 
cannot be guaranteed. In this paper, we further investigate 
this interesting phenomenon and propose an enhanced 
power prediction method, named by Spatial Mapping 
Markov-Difference (SMMD) prediction, to improve the 
prediction accuracy. As far as we know, SMMD is the first 
work to adopt a second prediction calibration for the data 
difference to reduce the stochastic error. 

The novelty and contributions of this paper are sum-
marized as follows: 

 We analyze and compare several kinds of prediction 
models and collect a set of practical electricity con-
sumption data (with duration of one month). Based on 
the realistic data collections, we make a detailed analysis 
of the stochastic property of electricity consumption, 
and highlight that not all power consumption data fit the 
Markov property completely.  

 We make a set of tests to adjust each set of electricity 
consumption. Spatial mapping with different parameters 
are first adopted to alleviate the inconsistency between 
the Markov model and the data stochastic property. This 
spatial mapping is reversible. Based on this preprocess, 
it allows us to use the Markov prediction model for the 
practical power data. 

 We explore an enhanced Markov-difference prediction 
model. In particular, the power data generate two new 
data sequences. The first sequence is built by 
discretizing data into many different ranges; the second 
one is built by the data difference. Then, a Markov 
prediction is conducted for the data range sequence to 
predict the range. The gray prediction model is further 
considered to establish an infinite differences information 
model for the power fluctuation dataset based on the 
data difference sequence. This process aims to fine-
adjust the primary predict result and can make up for the 
limitations of only using Markov prediction model. 

 We test the performance of SMMD method in practical 
scenarios and carry out a set of experiments to analyze 
the prediction accuracy by comparing with the traditional 
Markov prediction method. Practical electricity con-
sumption data are used as the experiment samples. 
Experimental results demonstrate that SMMD method 
can improve the prediction accuracy with respect to 
state-of-the-art solutions. 
 
The rest of this paper is organized as follows. Section 2 

summarizes the background and related works. Section 3 
details the basic theory models and workflow of the 
proposed SMMD solution. Section 4 presents the experi-
mental results and analysis. Finally, section 5 concludes 
this paper. 

2. Background and Related Works 
 
In this section, we make a brief survey on existing 

prediction methods, and summarize the related researches 
on power consumption in Smart Grids. 

 
2.1 Traditional prediction methods 

 
Traditional forecasting methods mainly include the trend 

extrapolation forecasting method, regression analysis fore-
casting method and time series forecasting method. 

 
2.1.1 TEF method 

 
TEF is a prediction method using the data fitting [20]. 

Due to the randomness property, it analyzes data trends 
using the fitting equation and determines whether the 
tendency obeys a linear or nonlinear law. Power load 
forecasting usually has a certain trend, for example, the 
residential electricity consumption can be fitted by using 
trend analysis. TEF method is suitable for the prediction 
which has less data and short forecast period. It also 
determines the fitting tendency through analyzing data 
trends [4]. However, this method cannot change along with 
dynamic load, and it will increase the chance of calculation 
errors. 

 
2.1.2 RAF method 

 
RAF method is used to set up the regression equations 

between different variables by analyzing the relation of 
independent variables and dependent variables. It predicts 
dependent variable according to independent variable, 
thereby determining relevant relationship. Therefore, 
RAF method is a high effective and practical method for 
short-term forecasts [22]. This method can be adopted to 
predict future development level, as long as we have the 
main factors affecting the variables. Regression analysis 
forecasting method can be adopted when we know the 
main factors affecting the market [20, 23]. This method is 
an effective and practical method for short-term forecasts. 
However, this method is not suitable for a long-term 
experiment. 

 
2.1.3 TSF method 

 
TSF method is widely used in electric power load 

analysis [6]. It takes power load data as random sequence 
which changes along with the time, that is, present load 
data has inevitable connection with the past load data. 
Therefore, we can use the random model to analyze the 
statistical data, get the relevant parameters, and complete 
the model of future power load forecasting. 

Time series analysis is a statistical method for dynamic 
data processing [22]. Based on stochastic process theory 
and mathematical statistics, it is used to study the statistical 
law of random data sequence to solve practical problems. 
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In other words, electric power load is a stochastic model 
with continuation of time. Then, a random model can be 
used to analyze the statistical data. 

 
2.2 Advanced prediction methods 

 
Modern forecasting method mainly includes artificial 

neural network forecasting method, wavelet analysis 
method and gray theory forecasting method. 

 
2.2.1 ANNF method 

 
ANNF method is a nonlinear and adaptive information 

processing system which is composed of a large number of 
processing units [21, 31]. It is put forward on the basis of 
modern neuroscience, and tries to process the information 
by simulating the mechanism of brain neural network 
and the way of memory. ANNF is configured with the 
following characteristics: (i) information processing occurs 
at many single elements called nodes, or neurons; (ii) 
signals are passed between nodes through connection links; 
(iii) each connection link has an associated weight that 
represents its connection strength; (iv) each node typically 
applies a nonlinear transformation called an activation 
function to its net input to determine its output signal. 

 
2.2.2 WAF method 

 
WAF method is carried out by wavelet transform which 

decomposes load into different frequency components [6, 
8, 26]. It can be used to decompose the complex load 
sequence into a number of relatively simple sub sequences. 
The ability of variable metric analysis and local time 
interval information of wavelet transform makes it widely 
used in load forecasting and other aspects of power system. 
Extensive work have been done for more models, for 
example, Liang et al. presented a clear description of 
wavelet analysis forecasting method for Smart Grids [10]. 

 
2.2.3 GTF method 

 
GTF is a deepening development of the forecasting 

system [26-29]. It changes the original data into a regular 
pattern of the formation and then sets a model. The essence 
of the gray model is: with limited information to establish 
an infinite differences information model. Typically, GM 
(1,1) model is one of the most common gray modeling 
methods [23]. 

In fact, the gray model is a generation series model, and 
usually described by differential equations. In [26, 28, 29], 
detailed descriptions elaborate the practical application in 
our lives. This method has a wide application range, such 
as the forecast of land-using change and total freight of 
ocean shipments. What’s more, this method can be 
applied with a high accuracy. Some improved GM(1,1) 
forecast models are also proposed based on the Markov 
theory [27]. Therefore, the gray prediction can become the 
main means for power prediction. However, the original 
data is often not well applicable to the gray theory model 
[24]. How to deal with the data is also a key point for GTF 
method. 

Through a careful comparison, we make a brief summary 
of the advantages and disadvantages of the aforementioned 
methods, which are concluded in the Table 1. All these 
methods provide available tools to forecast power 
consumption. However, each solution has its limitations 
highly dependent on the practical dataset. Each of them 
is difficult to achieve a required accuracy for the 
complex power consumption data, which have various 
and undiscovered stochastic properties for different data 
samples. Therefore, it is of great significance to further 
research some advanced, integrated and refined power 
consumption prediction approaches. 

Our solution is motivated based on two main con-
siderations: 

(1)  With an investigation of practical power con-
sumption datasets, we found that power consumption is 
not well fitted with the Markov model. Therefore, it will 
degrade the accuracy of power prediction if directly using 
traditional Markov-based methods. Thus, we use a spatial 
mapping to preprocess the original data, to make them 
follow the Markov features. 

(2) Markov chain forecasting model is suitable for 

 
Table 1. A brief summary of power forecasting methods 

Types Advantages Disadvantages 

TEF a) small demand of data 
b) short-term forecast 

a) applicable to static load 
b) increase calculation error 

RAF a) simple structure 
b) high prediction accuracy 

a) not suit complex situations 
b) high data requirements 

Traditional 
forecasting 

method 
TSF a) little calculating work 

b) does not need much historical data 
a) cannot fully consider the factors affecting the load data
b) cannot be summed up  

ANNF 
a) have the ability of self-learning, optimization calculation 
b) fully consider the impact of the load changes 
c) high prediction accuracy 

a) long learning time will affect the learning objectives 
b) slow network convergence 
c) poor adaptability to unexpected events 

WAF a) have adaptive capability 
b) high prediction accuracy a) affected by weather, temperature, and humidity 

Modern 
forecasting 

method 

GTF 
a) simple calculation 
b) does not consider the distribution law and the change tendency
c) high accuracy of short-term prediction 

a) only can be applied to load index with exponential 
growth trend  

b) not suitable for long-term prediction 



Enhanced Markov-Difference Based Power Consumption Prediction for Smart Grids 

 1056 │ J Electr Eng Technol.2017; 12(3): 1053-1063 

describing the large random volatility of the prediction 
problem. However, due to the non-memory property of 
Markov chain, it easily misses some relations hidden in 
the power data sequences, hence, brings some prediction 
errors. To reduce this error, we use the gray prediction 
model to establish an infinite differences information 
model, according to the power fluctuation dataset. It can 
make up for the limitations of only using Markov prediction 
model. 

Based on above considerations, we propose an enhanced 
prediction method named SMMD to guarantee the predict 
accuracy. 

 
 

3. Enhanced SMMD Solution 
 

3.1 Basic models for SMMD 
 
To facilitate the analysis, a set of power consumption 

data can be seen as a continuous time stochastic process. 
We use ( ){ }, 0X t t ≥  to denote a continuous time 
stochastic process and its countable state space is defined 
as { }1, , , kE i j i i= " . We suppose this stochastic process is 
a Markov process. The state transition probabilities should 
follow the condition: 

 

 
( ) ( ){ }

( ) ( ) ( ){ }, ,k k

P X t s j X s i
P X t s j X s i X s i

+ = =
= + = = = "

 (1) 

 
where 1, , , , ;ki j i i E∈" 1 0;ks s s> ≥ ≥" , 0;t s > k N∈ . 

As we can see, the state j in time t +s only associates 
with its former state i in time s. 

Furthermore, let ( ) { ( ) ( ) }ijp t P X t s j X s i= + = =  denote 
the transition probability that the current process being in 
state i and then in state j in a time t later. Then, all 
transition probabilities at the time t can make up a 
transition matrix P as shown follows: 

 

 

11 12 1

21 22 2

1 2

j

j

i i ij

p p p
p p p

P
p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" " "
" " "

# # " " # "
" " "

# # " " # "

. (2) 

 
Based on this, the lifetime of each state should follow 

the exponential distribution as for a Markov process [19]. 
We make a detailed analysis of the stochastic property of 
electricity consumption. We find that the lifetime of each 
state does not well follow the exponential distribution in 
the practical power consumption data. It means that not 
all power consumption data fit the Markov property 
completely. Therefore, the prediction accuracy will be 
reduced if directly using traditional Markov prediction 
methods. Fig. 2 shows the fitting results by the exponential 

distribution.  
To resolve this problem, we adopt a spatial mapping to 

make the statistical property of data sequence satisfy the 
Markov property better. This spatial mapping is simply 
defined as follows: 

 

 
( )
( )-1

F
F

′ =
′=

T T
T T  (3) 

 
where T  and ′T  denote two different spaces, F(·) 
denotes the mapping function, and F-1(·) is the inverse 
mapping. It is noted that this mapping may be very 
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Fig. 2. Fitting by the exponential distribution 
 

Algorithm: Enhanced SMMD Prediction  

1: Ai (i=1,2,…,a) : a series of original data; 
2: Determine N by an exhaust algorithm; 
3: max mink A A= −  as the Interval range K ; 
4: Divided the interval equally into N parts 1 2 3, , Nk k k k… ; 
5: for u from 1 to N do 
6:   for w from 1 to N do 
7:   Numuw = the number of points from K1 to the next one; 
8:   end for 
9: end for  
10: for u from 1 to N do 
11:  for w from 1 to N do 

12:    ( )1 1

N N

uw uw iri r
P Num Num

= =
= ÷ ∑ ∑ ;   

13:  end for 
14: end for 
15: Generate a transfer matrix P = 11 1NP P"  
                              "# #  
                           1N NNP P"  
16: Investigate Aa in which interval; 
17: Use P and Aa to determine the predicted interval;  
18: Q1 = the median of the predicted interval; 
19: for u from 1 to (a-1) do 
20:    Ju=Au+1 − Au; 
21: end for 
22: Ju 1, 2, , 1( )i a= … −  is a series of jitter data; 
23: Apply gray prediction model in step 6 we get Q2; 
24: Set Q as the final predicted value for power consumption.
25: Q = Q1+Q2 ; 
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different according to the practical dataset. The mapping 
should be reversible. Its function is to preprocess the 
dataset to make the data follow the Markov stochastic 
property well. Based on this spatial mapping, it allows us 
to use the Markov prediction model to predict the practical 
power data. 

Markov chain forecasting is suitable for describing the 
large random volatility of the prediction problem. 
Therefore, we use the Markov chain model to predict the 
primary result interval with a long term observation. 
Then, we take the gray prediction as a short observation 
in order to further optimize prediction for the jitters in 
each interval. 

Based on the above consideration, given time data 
sequence ( ){ }0 , 1, 2, ,x k k n= " , which is the jitters of 
the power data in each interval. Then, we can accumulate 
the original data of prediction ( ) ( ) ( )0 0 01 , 2 , ,x x x n" , 
that is, 

 

 ( ) ( ) ( ) ( )1 0

1

i

m

x i x m
=

=∑  (4) 

 
Then, we establish the differential equation, 
 

 
( )

( )
1

1dX aX u
dt

+ =  (5) 

 
Utilizing least square method to compute the values of 

a, u, we get the structural data matrix N. 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1 2 1
2
1 2 3 1
2

1 1 1
2

x x

x x
B

x n x n

⎡ ⎤⎡ ⎤− +⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎡ ⎤− +⎣ ⎦⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤− − +⎢ ⎥⎣ ⎦⎣ ⎦

# #
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Let yn be a column vector, 
 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 02 , 3 , ,
T

ny x x x n⎡ ⎤= ⎣ ⎦" . (7) 
 
The parameter identification a, u, can be calculated by  
 

 ( )
^ 1T T

n

a
a B B B y

u
−⎡ ⎤

= =⎢ ⎥
⎣ ⎦

.  (8) 

 
Then, we get the GM (1,1) gray prediction model for the 

jitters in each interval: 
 

( )
( ) ( ) ( )

1^
01 1 aiu ux i x e

a a
−⎛ ⎞+ = − +⎜ ⎟

⎝ ⎠
, (9) 

 

( )
( )

( )
( )

( )
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( )
( )

( )
( )
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x x
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⎨
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All above present the basic theory models used in 

enhanced SMMD solution. In the next section, we will 
detail the workflow of SMMD solution. 

 
3.2 SMMD workflow 

 
Based on the above analysis, we propose an enhanced 

prediction mechanism to improve the prediction accuracy. 
In particular, the prediction method mainly includes eight 
steps: 

Step 1: Check the raw power consumption data whether 
follow the Markov stochastic property and conduct a 
spatial mapping. 

Step 2: Disposal of data discretization and mapping the 
data series into different intervals. 

Step 3: Calculate the probability of data locating in each 
interval, and build a matrix. 

Step 4: Calculate the transition probability between any 
two intervals, and build the transfer matrix. 

Step 5: Compute the predicted interval value. 
Step 6: Construct the gray prediction model for the 

jitters of each interval.  
Step 7: Compute the predicted jitter value. 
Step 8: Obtain an optimal predicted value based on the 

Step 5 and Step 7. 
As for the step 3, we calculate the original probability of 

each interval with a method of difference. Suppose we get 
a series of data 1 2 3, , , , aA A A A"  and divide them into N 
intervals. We record the number of data in each section 

1 2 3, , , , NK K K K"  and then divided by the total number A  
to calculate the original probability of each interval 

1 2 3, , , , NP P P P" . 
As for the step 4, we apply the traditional Markov 

method to ( )1 2 3, , , , aA A A A"  to get transfer matrix P. P is 
produced by ( )1 2 3, , , , aA A A A" . The element Pab of P is 
the probability that data in range a jumping to the next hop 
range b. Then, we can compute the predicted interval value. 

As for the step 5, we investigate Aa in which interval, 

maxM

proN

 
Fig. 3. Optimization analysis of N 
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then we use P and Aa to determine the predicted interval, 
then we take the median of the predicted interval as the 
predicted value Q1. 

As for the step 6, we can get a new series of jitter data 
1 2 3 1, , LJ J J J −" , where each element is computed by 
1 2 1 2 3 2, 3 4 3 1 1, a a aJ A A J A A J A A J A A− −= − = − = − = −" . Then, 

we can the transition probability matrix ( )1 2 3', ', ', , 'NP P P P" . 
As for the step 7, we construct the gray prediction model 

for the jitter data 1LJ − , and obtain the predict value Q2. 
As for the step 8, we can obtain the predicted value with 

two groups of data. From the steps above, we obtain 
( )1 2 3, , , , NP P P P" , ( )1 2 3', ', ', , 'NP P P P" , aA  and 1LJ − . 
Then, we can get two predicted value Q1 and Q2. Take an 
overall consideration about the two predicted value, we get 
will the final predicted value calculated by Q=Q1+Q2. 

 
3.3 Optimized data discretization 

 
How many parts to be divided will be better? The 

prediction accuracy is determined by division patterns. 
Therefore the first question we care about is how to divide 
the series of data. We can coarsely divide the collected data 
into equal parts. The more parts we divide, the smaller each 
range is. 

In order to analyze the optimized division pattern, we 
define two variables for the accuracy. One is the interval 
accuracy M1, and the other one is the self-accuracy M2. If 
the discretization interval is too big, the predicted value is 
easier to fall in this interval, thus the range accuracy M1 is 
high, while the self-accuracy M2 is low, or vice versa. To 
this end, we take the range between the highest and lowest 
values as the segmented region. 

Assuming the number of parts we divide is N. As N 
increases, the range will become smaller, M1 will be 
smaller, and M2 will be bigger. If N is small enough, M1 
will take a dominant position, and the overall accuracy M 
will be near to 0. If N is large enough, M2 will take the 
dominant position, and the overall accuracy M will also be 
near to 0. Therefore, there must be an optimal N to make 
the result more accurate.  

The optimization analysis between M and N is shown 
in Fig. 3. To find the optimal value for N (NPRO), we can 
adopt an exhaust algorithm. According to the collected 
data, we let N increases from 1 to a larger number. In the 
beginning, M will rise along with the increasing of N. 
When N is greater than a certain number, M will decrease 
with the increase of N. Then, we can obtain NPRO, which is 
corresponding to the maximum value of M. 

 
 

4. Experimental Evaluations 
 

4.1 Data collections and test model 
 
To analyze the stochastic property of power consumption, 

we first collect an amount of practical electric consumption 

data. The practical location of the specific observation 
area is shown in the Fig. 4. The gray circle section 
indicates the location of the substation in the village. 
This substation equipment introduces a total of 10 lines 
connected to different areas. Each line is connected to a 
community. 

We randomly selected a cell as the experimental 
community (marked with “experimental line”), and selected 
a family in the cell to test their electricity consumption. 

In this observation area, an electricity meter is deployed 
to collect the real-time power consumption data. In order to 
reduce the amount of data sample, we conducted a data 
collection every 30 minutes. The whole collection process 
is with duration of one month (from August 10, 2015 to 
September 9, 2015). The collected power consumption data 
includes: voltage, current, zero-sequence current, actual 
power and so on. The voltage and current are three phases. 
Finally, we obtained 1459×6 data entries in total. Some 
descriptions of collected dataset are listed in Table 2. 
With these practical data collections, we will further the 
prediction performance. 

In our experiments, we first make a study on the periodic 
variation law of the Electric Power. We calculate the 
average value of the Electric Power at each hour of every 
day in a month, and analyze the rules of change. Then, we 
use the power consumption data in the first 27 days as the 
training data samples, and predict the next three power 
consumption by using two prediction methods. One is the 
Markovian prediction model proposed in [38], and another 
one is the enhanced SMMD prediction method proposed in 
this paper. In detail, a Discrete Time Markov Chain model 
(DTMC) is used as our comparison solution and the test 
model. 

 
Fig. 4. Experimental observation area 

 
Table 2. Dataset description 

Parameter Descriptions 
Duration August 10, 2015-september 9, 2015 
Object Village, Community, House 
Voltage Three phases 
Current Three phases 

Zero-sequence current 0~36A 
Time interval 30 minutes 

Total number of data entries 1459×6 
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4.2 Experimental analysis 
 
Fig. 5 shows the variation law of electric power in one 

period, which is about one day. As we can see, the electric 
power distributes between 200 to 400 Kw, and there are 
two peaks in around 12:00 and 19:30. The lowest point is 
at 5:00 am each day, which shows the electric power first 
decreases before 5:00 am and then increase until to 11:00 
am. From 1:30 pm, the electric power further starts 
increasing until 9:00 pm, then it decreases greatly until to 
0:00 am. 

In order to analyze and process data more convenient, 
we discretize electric power to further explore the 
distribution rule followed by the duration of each Electric 
Power State.  

Similar with the reference [19], the formula of 
discretization is as follows: 

 ( )
1

1
AS DR

Max A
⎢ ⎥

= ⋅ +⎢ ⎥+⎢ ⎥⎣ ⎦
 (11) 

 
where S is the Electric Power State (abbreviated as state), 
A is the electric power, and DR is the discretization range. 

Fig. 6 shows the status change of Electric Power 
Consumption after discretization (DR=9) within a day. We 
can see that the state of 6 (S=6) accounts for the majority 
since they appear many times in a row. It means that there 
is a relative big probability for the state 6. 

With a careful dataset analysis, we find that the duration 
of Electric Power State is poorly fitted by negative 
exponential distribution (as the Fig. 2 shows). Therefore, 
we cannot use the Markov based prediction without any 
amendment scheme. To this end, we introduce a simple 
solution to make the power prediction suit for the Markov 
model. 

We further discover that the Electric Power State can be 
well fitted by negative exponential distribution according 
to a special spatial mapping. In other words, through a 
spatial mapping, the Electric Power Consumption will 
greatly present the Markov properties. Therefore, before 
using Markov-based prediction, we should first conduct a 
transformation. Then, we calculate the fit parameter for 
Markov model, and thus the Markov prediction model is 
constructed. Next, we can conduct the prediction process 
based on Markov model to obtain the predictive data in the 
transformed space. Finally, through an inverse transfor-
mation, we make the predictive data return to the actual 
space, so as to obtain the actual power consumption. By this 
way, we can enhance the accuracy of Markov prediction. 

In this paper, we adopt a spatial mapping defined as 
follows: 

 
 α′ = ⋅T T  (12) 

 
where T  and ′T  denote two different spaces, and α is the 
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Fig. 5. Power consumption in a period 
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Fig. 6. Discretized electric power 
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Fig. 7. Frequency fitting with DR=6 

 
Table 3. The values of α in different situation 

 DR=6 DR=7 DR=8 DR=9 
S=3 0.007 0.007 0.009 0.014 
S=4 0.006 0.006 0.006 0.007 
S=5 0.016 0.008 0.006 0.005 
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coordinate change parameter. The values of α in our 
experiment are shown in the Table 3. 

After the defined spatial mapping, we found that the 
residence time of each state can meet a negative exponential 
distribution well. When DR=6 and DR=7, the results of 
statistics and simulation are shown in Fig. 7 and Fig. 8, 
we can see that Residence Time of Electric Power State 
conforms to the negative exponential distribution, and 
the fitting result of negative exponential distribution is 
quite good. The maximum of Frequency in all cases when 
DR=6 is between 20 to 30, and the range of Frequency 
maximum when DR=7 is wide, from 35 to 60. In most 
cases, results of statistics and simulation are consistent 
with overall change rules of negative exponential 
distribution. For example, frequency shows tendency of 
decrease all the time, and a sudden drop will occur in a 
certain moment. However, there are also abnormal situations 
of some statistical data. For example, some frequency 

statistics drop first and rise late when DR=6 and S=3, 
and there is a case that the frequency substantially 
unchanged when Residence Time is small. The causes of 
these abnormal phenomena are mainly the inadequate 
discretization state values, but it is also possible that there 
is a sudden electricity situation. 

As shown in Fig. 9 and Fig. 10, we can see that the 
results of statistics and simulation are basically same as the 
above when DR=8 and DR=9, and the abnormal situation 
mentioned above also appears. From the overall pictures 
contrast, it is the best when DR=7, and there is no 
abnormal statistics. The root-mean-square-error (RMSE) of 
statistics and simulation in all cases are shown in Table 4. 
We can see that it is the best when DR=7, and the worst 
when DR=8. When DR=7 and S=5, the results of negative 
exponential distribution is best, and the RMSE is 0.97. 
When DR=6 and S=4, the results of negative exponential 
distribution is the worst, and the RMSE is 5.78. The λ 

0 0.02 0.04 0.06 0.08
0

10

20

30

40

50

Residence Time

F
re

qu
en

cy

 

 

y=44.9*exp(-44.9x)

DR=7
S=3

  
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

20

40

60

80

100

Residence Time

F
re

qu
en

cy

 

 

y=82.43*exp(-82.43x)

DR=7
S=4

  
0 0.02 0.04 0.06 0.08 0.1

0

10

20

30

40

50

60

Residence Time

F
re

qu
en

cy

 

y=59.65*exp(-59.65x)

DR=7
S=5

 
Fig. 8. Frequency fitting with DR=7 
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Fig. 9. Frequency fitting with DR=8 
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Fig. 10. Frequency fitting with DR=9 
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fitting values are listed in the Table 5. 
Through the above analysis, we can find that Residence 

Time of Electric Power State conforms to the negative 
exponential distribution after the suitable spatial mapping 
process. 

 
4.3 Prediction analysis 

 
The prediction comparisons are shown in Fig. 11. In this 

figure, we can see the prediction results in both solutions 
are approximate to the practical data, where the value of 
power consumption jitters in the range of 227~247. 
However, the varying pattern in SMMD prediction is more 
similar to the practical one. 
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Fig. 13. Prediction deviation (2nd day) 
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Fig. 14. Prediction deviation (3rd day) 

 
In order to further compare the performance of the 

SMMD prediction method with the traditional one, we 
analyze the prediction deviation of both methods. The 
prediction deviation comparisons are illustrated in Fig. 12, 
Fig. 13 and Fig. 14. The white column chart represents the 
prediction deviation of the state-of-the-art solution, and the 
blue column chart represents the prediction deviation of 
our proposed SMMD method. 

In these figures, we can see that the deviation of SMMD 
prediction method is smaller than the traditional Markov 
one. For example, it keeps smaller than 4 in most cases of 
SMMD. The deviation of traditional method is mostly 
about 7, and several cases are even more than 12. Besides, 
the deviation of traditional method fluctuates sharply, but 
the new proposed solution does not. We know that the 
volatility of the prediction deviation will have a great 
impact on the stability of the prediction. On the other hand, 
we can also see that the deviation of traditional method 
generally grows over the forecast time for the traditional 
Markov method. For example, the prediction deviation in 
the 3rd day is much bigger than the one in the 1st day. 
However, the new SMMD prediction method basically 
remains unchanged, which proves the stability of the 
SMMD prediction. 

Based on above analysis, we conclude that the proposed 
SMMD prediction method has great improvement in terms 
of prediction accuracy, prediction stability and predictable 
term. 

Table 4. RMSE of statistics and simulation 
 DR=6 DR=7 DR=8 DR=9 

S=3 3.67 2.52 3.41 3.17 
S=4 5.78 2.59 3.66 3.29 
S=5 1.67 0.97 4.46 2.08 

 
Table 5. λ fitting values 

λ DR=6 DR=7 DR=8 DR=9 
S=3 30.75 44.90 50.21 19.22 
S=4 42.95 82.43 64.41 50.43 
S=5 39.60 59.65 65.48 108.7 
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Fig. 11. Power consumption predictions (3 days) 
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Fig. 12. Prediction deviation (1st day) 
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5. Conclusion 
 
Power prediction is a critical concern in smart grids to 

improve power efficiency. In this paper, we propose an 
enhanced power consumption prediction method, named 
SMMD. In particular, we first analyze and compare several 
kinds of prediction models. Furthermore, we collect a set 
of practical electricity consumption data in a certain 
community and make a detailed analysis of its stochastic 
property. We explore a special spatial mapping approach 
to make the power data conform to the Markov process. 
Then, an enhanced Markov-difference power consumption 
prediction method is proposed to improve the prediction 
quality. Finally, a simulation campaign has been carried 
out, demonstrating that SMMD achieves improved 
prediction accuracy with respect to state-of-the-art solutions 
in terms of prediction accuracy, stability and predictable 
term. 
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