• Title/Summary/Keyword: Space approximation

Search Result 502, Processing Time 0.043 seconds

Rule of Combination Using Expanded Approximation Algorithm (확장된 근사 알고리즘을 이용한 조합 방법)

  • Moon, Won Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.21-30
    • /
    • 2013
  • Powell-Miller theory is a good method to express or treat incorrect information. But it has limitation that requires too much time to apply to actual situation because computational complexity increases in exponential and functional way. Accordingly, there have been several attempts to reduce computational complexity but side effect followed - certainty factor fell. This study suggested expanded Approximation Algorithm. Expanded Approximation Algorithm is a method to consider both smallest supersets and largest subsets to expand basic space into a space including inverse set and to reduce Approximation error. By using expanded Approximation Algorithm suggested in the study, basic probability assignment function value of subsets was alloted and added to basic probability assignment function value of sets related to the subsets. This made subsets newly created become Approximation more efficiently. As a result, it could be known that certain function value which is based on basic probability assignment function is closely near actual optimal result. And certainty in correctness can be obtained while computational complexity could be reduced. by using Algorithm suggested in the study, exact information necessary for a system can be obtained.

APPROXIMATION METHOD FOR SCATTERED DATA FROM SHIFTS OF A RADIAL BASIS FUNCTION

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1087-1095
    • /
    • 2009
  • In this paper, we study approximation method from scattered data to the derivatives of a function f by a radial basis function $\phi$. For a given function f, we define a nearly interpolating function and discuss its accuracy. In particular, we are interested in using smooth functions $\phi$ which are (conditionally) positive definite. We estimate accuracy of approximation for the Sobolev space while the classical radial basis function interpolation applies to the so-called native space. We observe that our approximant provides spectral convergence order, as the density of the given data is getting smaller.

  • PDF

COMMON FIXED POINT AND INVARIANT APPROXIMATION IN MENGER CONVEX METRIC SPACES

  • Hussain, Nawab;Abbas, Mujahid;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.671-680
    • /
    • 2008
  • Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in a Menger convex metric space are obtained. As an application, related results on best approximation are derived. Our results generalize various well known results.

SOBOLEV TYPE APPROXIMATION ORDER BY SCATTERED SHIFTS OF A RADIAL BASIS FUNCTION

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.435-443
    • /
    • 2007
  • An important approach towards solving the scattered data problem is by using radial basis functions. However, for a large class of smooth basis functions such as Gaussians, the existing theories guarantee the interpolant to approximate well only for a very small class of very smooth approximate which is the so-called 'native' space. The approximands f need to be extremely smooth. Hence, the purpose of this paper is to study approximation by a scattered shifts of a radial basis functions. We provide error estimates on larger spaces, especially on the homogeneous Sobolev spaces.

ONE-SIDED BEST SIMULTANEOUS $L_1$-APPROXIMATION

  • Park, Sung-Ho;Rhee, Hyang-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.155-167
    • /
    • 1996
  • Let X be a compact Hausdorff space, C(X) denote the set of all continuous real valued functions on X and $\ell \in N$ be any natural number.

  • PDF

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF

APPROXIMATION ORDER TO A FUNCTION IN $C^1$[0, 1] AND ITS DERIVATIVE BY A FEEDFOWARD NEURAL NETWORK

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.139-147
    • /
    • 2009
  • We study the neural network approximation to a function in $C^1$[0, 1] and its derivative. In [3], we used even trigonometric polynomials in order to get an approximation order to a function in $L_p$ space. In this paper, we show the simultaneous approximation order to a function in $C^1$[0, 1] using a Bernstein polynomial and a feedforward neural network. Our proofs are constructive.

  • PDF

QUASI-INTERPOLATORY APPROXIMATION SCHEME FOR MULTIVARIATE SCATTERED DATA

  • Yoon, Jung-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.713-719
    • /
    • 2011
  • The problem of approximation from a set of scattered data arises in a wide range of applied mathematics and scientific applications. In this study, we present a quasi-interpolatory approximation scheme for scattered data approximation problem, which reproduces a certain space of polynomials. The proposed scheme is local in the sense that for an evaluation point, the contribution of a data value to the approximating value is decreasing rapidly as the distance between two data points is increasing.

CONVERGENCE OF C-SEMIGROUPS

  • Lee, Young S.
    • Korean Journal of Mathematics
    • /
    • v.6 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • In this paper, we show convergence and approximation theorem for C-semigroups. And we study the problem of approximation of an exponentially bounded C-semigroup on a Banach space X by a sequence of exponentially bounded C-semigroup on $X_n$.

  • PDF