ONE-SIDED BEST SIMULTANEOUS L_1 -APPROXIMATION

SUNG HO PARK* AND HYANG JOO RHEE

1. Introduction

Let X be a compact Hausdorff space, C(X) denote the set of all continuous real valued functions on X and $\ell \in \mathbb{N}$ be any natural number. Define a norm on the space of all ℓ -tuples of elements of C(X) as follows: for any f_1, \dots, f_ℓ in C(X), let $F = (f_1, \dots, f_\ell)$ and

(1.1)
$$||F|| = ||(f_1, \dots, f_\ell)|| = \max_{\mathbf{a} \in A} ||\sum_{i=1}^\ell a_i f_i||_1$$

where
$$A = \{ \mathbf{a} = (a_1, \dots, a_{\ell}) \mid \sum_{i=1}^{\ell} a_i = 1, a_i \geq 0, i = 1, \dots, \ell \}.$$

Now suppose that $F = (f_1, \dots, f_{\ell})$ in C(X) are given and S is an n-dimensional subspace of C(X). We want to consider the problem of approximating these functions simultaneously by elements in

$$S(F) := \bigcap_{i=1}^{\ell} S(f_i) := \bigcap_{i=1}^{\ell} \{ f \in S : f \leq f_i \}$$

in the sense of the minimization of the norm in (1.1). In other words, we want to find $f \in S(F)$ to minimize

$$(1.2) ||(f_1 - f, \cdots, f_{\ell} - f)||.$$

Received December 26, 1994. Revised July 15, 1995.

1991 AMS Subject Classification: 41A28.

Key words: One-sided best simultaneous L_1 -approximation, positive quadrature formula, one-sided L_1 -unicity space.

* This studies were supported in part by the Basic Research Institute Program, Moe, Korea.

If such a function f^* exists, it is called a one-sided best simultaneous L_1 -approximation of $F = (f_1, \dots, f_\ell)$. Unless explicitly stated otherwise we shall assume throughout this article that F is an ℓ -tuple of f_1, \dots, f_ℓ .

It should be remarked that in this paper we only consider the problem of best approximation from below. The problem of best approximation from above, where the approximating set is

$$M(F) \; := \; \bigcap_{i=1}^{\ell} M(f_i) \; := \; \bigcap_{i=1}^{\ell} \{g \in M : f_i \leq g\},$$

can be treated in a similar way, where M is an n-dimensional subspace of C(X).

Let μ be a finite positive admissible measure defined on X, that is, $\mu(O) > 0$, for every open set $O \subseteq X$.

First, remark that

$$\max_{\mathbf{a} \in A} \| \sum_{i=1}^{\ell} a_i (f_i - f) \|_1 = \max_{1 \le i \le \ell} \| f_i - f \|_1.$$

This follows from the inequalities

$$\begin{aligned} \max_{1 \le i \le \ell} \|f_i\|_1 & \le \max_{\mathbf{a} \in A} \|\sum_{i=1}^{\ell} a_i f_i\|_1 \\ & \le \max_{\mathbf{a} \in A} \sum_{i=1}^{\ell} a_i \|f_i\|_1 \\ & \le \max_{1 \le i \le \ell} \|f_i\|_1. \end{aligned}$$

2. Existence and characterization

In this section, we discuss questions of existence and characterization of a one-sided best simultaneous L_1 -approximation.

Firstly, by definition, S(F) is a closed convex subset of S. Thus if S(F) is nonempty, then there exists $f \in S(F)$ which minimize (1.2).

When is S(F) a nonempty set? If for all $i = 1, \dots, \ell$, $f_i \geq 0$, then $0 \in S(F)$. If S contains a strictly positive function (or equivalently a strictly negative function), then S(F) is nonempty. We have therefore proven that S(F) is nonempty for every F if and only if S contains a strictly positive function. Even if S does not contain a strictly positive function, we can still consider $f \in S(F)$ to minimize (1.2). However, we shall restrict ourselves to those F which S(F) is nonempty.

Now that we have dealt with the problem of existence, let us turn to the question of characterizing one-sided best simultaneous L_1 -approximation.

LEMMA 2.1. The following statements are equivalent:

(1) $f^* \in S(F)$ attains the supremum in

$$\sup_{f \in S(F)} \int_X f d\mu.$$

(2) f^* is a one-sided best simultaneous L_1 -approximation of F.

Proof. Suppose that $f^* \in S(F)$ and $\int_X f d\mu \leq \int_X f^* d\mu$ for all $f \in S(F)$. Then

$$\begin{split} \|(f_1 - f, \cdots, f_{\ell} - f)\| &= \max_{\|\mathbf{a}\|_1 = 1} \|\sum_{i=1}^{\ell} a_i (f_i - f)\|_1 \\ &= \max_{\|\mathbf{a}\|_1 = 1} \int_X \sum_{i=1}^{\ell} a_i f_i d\mu - \int_X f d\mu \\ &\geq \max_{\|\mathbf{a}\|_1 = 1} \int_X \sum_{i=1}^{\ell} a_i f_i d\mu - \int_X f^* d\mu \\ &= \|(f_1 - f^*, \cdots, f_{\ell} - f^*)\| \end{split}$$

for any $f \in S(F)$.

Conversely, if f^* attains the minimization of (1.2), then $\int_X f d\mu \le \int_X f^* d\mu$ for all $f \in S(F)$, by the above inequality. \square

REMARK. Lemma 2.1 yields the following weaker version which is Pinkus' result. Let $\ell = 1$. For each $f \in C(X)$, $u^* \in S(f)$ attaining the

infimum in $\inf_{u \in S(f)} ||f - u||_1$ is equivalent to u^* attaining the supremum in

$$\sup_{u \in S(f)} \int_X u d\mu.$$

THEOREM 2.2. Suppose that $\int_X f d\mu \neq 0$ for some $f \in S$ and f_1, \dots, f_ℓ in C(X) are given such that there exists $f_0 \in S$ for which $f_0 < f_i$ on X, $i = 1, \dots, \ell$. Then f^* is a one-sided best simultaneous L_1 -approximation of F if and only if $f^* \in S(F)$ and for any $f \in S$ with $f \leq 0$ on $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$, it follows that $\int_X f d\mu \leq 0$, where $Z(f_i - f^*) = \{x \in X : f_i(x) = f^*(x)\}$.

Proof. Suppose that there exists a $\tilde{f} \in S$ with $\tilde{f} \leq 0$ on $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$

but $\int_X \tilde{f} d\mu > 0$. If $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$ is empty, then there exist $\varepsilon > 0$ and $f \in S$ such that

$$\int_X f d\mu > 0,$$

$$f^* + \varepsilon f \in S(F)$$

and

$$\int_X (f^* + \varepsilon f) d\mu > \int_X f^* d\mu.$$

It is a contradiction. Now we assume that $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$ is nonempty. By assumption, there exists $f_0 \in S$ such that $f_0 < f_i$ on $X, i = 1, \dots, \ell$. This implies that

$$\tilde{g} := f^* - f_0 > 0$$
 on $\bigcup_{i=1}^{\ell} Z(f_i - f^*).$

Then there exists $\delta > 0$ such that

$$\tilde{h} := \tilde{f} - \delta \tilde{g} < 0$$
 on $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$

and

$$\int_X \tilde{h} d\mu = \int_X \tilde{f} d\mu - \delta \int_X \tilde{g} d\mu > 0.$$

For each $f \in C(X)$, define $J(f) = \{x \in X : f(x) < 0\}$. Then $\bigcup_{i=1}^{\ell} Z(f_i - f^*) \subset J(\tilde{h})$ and $J(\tilde{h})$ is a proper subset of X since $\int_X \tilde{h} d\mu > 0$. Since $X \setminus J(\tilde{h})$ is compact, there exists m > 0 such that $m \leq f_i - f^*$ on $X \setminus J(\tilde{h})$ for all $i = 1, \dots, \ell$. And let M > 0 be such that $\tilde{h} \leq M$ on X. Let $\varepsilon = m/M$. Then $\varepsilon > 0$, $k := f^* + \varepsilon \tilde{h} \in S(F)$ and

$$\int_X k d\mu > \int_X f^* d\mu,$$

which is a contradiction.

Conversely, we may assume that $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$ is nonempty. Let $f \in S(F)$ and $x \in \bigcup_{i=1}^{\ell} Z(f_i - f^*)$. Then there exists $i \in \{1, \dots, \ell\}$ such that $f_i(x) = f^*(x)$, so $f(x) \leq f_i(x) = f^*(x)$. Thus $f - f^* \leq 0$ on

 $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$. By assumption,

$$\int_X (f - f^*) d\mu \le 0.$$

Hence $\int_X f d\mu \leq \int_X f^* d\mu$ for all $f \in S(F)$. By Lemma 2.1, f^* is a one-sided best simultaneous L_1 -approximation of F. \square

The characterization of Theorem 2.2 is not easy to use. With a little work, we can rewrite Theorem 2.2 in the following more useful form.

LEMMA 2.3 [1]. Suppose that $\int_X f d\mu \neq 0$ for some $f \in S$. Let K be a closed subset of X with the property that if $f \in S$ satisfies $f(x) \leq 0$ on K then $\int_X f d\mu \leq 0$. Then there exist x_1, \dots, x_k in K and positive real numbers $\lambda_1, \dots, \lambda_k$ such that

$$\int_X f d\mu = \sum_{i=1}^k \lambda_i f(x_i)$$

for all $f \in S$, where $1 \le k \le n$.

THEOREM 2.4. Suppose that $\int_X f d\mu \neq 0$ for some $f \in S$, and f_1, \dots, f_ℓ in C(X) are given such that there exists f_0 in S for which $f_0 < f_i$ on X, $i = 1, \dots, \ell$. Then the following are equivalent:

- (1) f^* is a one-sided best simultaneous L_1 -approximation of F.
- (2) $f^* \in S(F)$ and there exist distinct points x_1, \dots, x_k in X and positive real numbers $\lambda_1, \dots, \lambda_k, 1 \le k \le n$ for which

$$(a) \quad \{x_1, \cdots, x_k\} \subset \bigcup_{i=1}^{\ell} Z(f_i - f^*)$$

(b)
$$\int_X f d\mu = \sum_{i=1}^k \lambda_i f(x_i) \quad \text{for all} \quad f \in S.$$

Proof. Suppose that f^* is a one-sided best simultaneous L_1 - approximation of F and let $K = \bigcup_{i=1}^{\ell} Z(f_i - f^*)$. Then $f^* \in S(F)$ and there exist x_1, \dots, x_k in $\bigcup_{i=1}^{\ell} Z(f_i - f^*)$ and positive numbers $\lambda_1, \dots, \lambda_k$ such that for all $f \in S$

$$\int_X f d\mu = \sum_{i=1}^k \lambda_i f(x_i),$$

by Theorem 2.2 and Lemma 2.3.

Conversely, assume that $f^* \in S(F)$ and there exist distinct points x_1, \dots, x_k in X and positive numbers $\lambda_1, \dots, \lambda_k$, $1 \le k \le n$ for which (a) and (b) hold. Then for any $f \in S(F)$,

$$\int_{X} f d\mu = \sum_{i=1}^{k} \lambda_{i} f(x_{i})$$

$$\leq \sum_{i=1}^{k} \lambda_{i} f_{j(i)}(x_{i})$$

$$= \int_{X} f^{*} d\mu,$$

where $j(i) \in \{1, \dots, \ell\}$ such that $x_i \in Z(f_{j(i)} - f^*)$ for each $i \in \{1, \dots, k\}$. By Lemma 2.1, f^* is a one-sided best simultaneous L_1 -approximation of F. \square

COROLLARY 2.5. Suppose that the conditions of Theorem 2.4 hold. Let f^* be a one-sided best simultaneous L_1 -approximation of F with x_1, \dots, x_k as in Theorem 2.4 (2). Then, for any one-sided best simultaneous L_1 -approximation f of F, $f(x_i) = f^*(x_i)$, $i = 1, \dots, k$.

Proof. By Lemma 2.1, for any one-sided best simultaneous L_1 -approximation f of F, we have

$$\int_X f d\mu = \int_X f^* d\mu,$$

so

$$\int_{X} f d\mu = \sum_{i=1}^{k} \lambda_{i} f(x_{i})$$
$$= \sum_{i=1}^{k} \lambda_{i} f^{*}(x_{i})$$
$$= \int_{X} f^{*} d\mu.$$

Since $\lambda_i > 0$ and $f^*(x_i) - f(x_i) \ge 0$, we obtain $f(x_i) = f^*(x_i)$ for all $i = 1, \dots, k$. \square

Recall that S is linearly independent over $\{x_1, \dots, x_n\}$ if $f \in S$ and $f(x_i) = 0$, $i = 1, \dots, n$, then f = 0 [1]. Thus we have the following result.

COROLLARY 2.6. Suppose that the conditions of Theorem 2.4 hold, and let f^* be a one-sided best simultaneous L_1 -approximation of F with x_1, \dots, x_k as in Theorem 2.4 (2). Assume that S is linearly independent over $\{x_1, \dots, x_k\}$. Then the one-sided best simultaneous L_1 -approximation of F is unique.

The formula (b) of Theorem 2.4 is called a quadrature formula for S. It has the additional property that all the coefficients $\lambda_1, \dots, \lambda_k$ are positive real numbers. If

(2.1)
$$\int_{X} f d\mu = \sum_{i=1}^{k} \lambda_{i} f(x_{i})$$

for all $f \in S$ where $\lambda_i > 0$, $i = 1, \dots, k$ and $1 \le k < \infty$, then we shall say that (2.1) is a positive quadrature formula with k active points $\{x_i\}_{i=1}^k$.

3. Uniqueness

We now turn to the question when we have a unique one-sided best simultaneous L_1 -approximation for every ℓ -tuples of elements of C(X).

LEMMA 3.1 [1]. Let S be an n-dimensional subspace of C(X) and assume that there exists $f \in S$ with $\int_X f d\mu \neq 0$. Let $\{s_1, \dots, s_n\}$ be any basis for S. If for all $f \in S$

$$\int_X f d\mu = \sum_{i=1}^k \lambda_i f(x_i)$$

where $1 \le k < \infty$, $\lambda_i > 0$, $i = 1, \dots, k$ and

$$rank[s_i(x_j)]_{n \times k} < k,$$

then there exists a positive quadrature formula for S with r active points $\{y_1, \dots, y_r\}$ where $1 \le r < k$, and $\{y_1, \dots, y_r\} \subset \{x_1, \dots, x_k\}$.

DEFINITION 3.2. A subspace S of C(X) is said to be a one-sided ℓ -simultaneous L_1 -unicity space if for each $F = (f_1, \dots, f_{\ell})$ in C(X), there exists a unique one-sided best simultaneous L_1 -approximation of F.

THEOREM 3.3. Suppose that S contains a strictly positive function and the dimension of S is $n \geq 2$. Then S is a one-sided ℓ -simultaneous L_1 -unicity space if and only if each positive quadrature formula for S contains at least n active points.

Proof. Suppose not, that is, for all $f \in S$

$$\int_X f d\mu = \sum_{i=1}^k \lambda_i f(x_i)$$

where $1 \leq k \leq n-1$ and $\lambda_i > 0, i = 1, \dots, k$. Since dimS = n > k, there exists a $f^* \in S \setminus \{0\}$ satisfying $f^*(x_i) = 0, i = 1, \dots, k$. Set $g_i = |f^*|, i = 1, \dots, \ell$. Let $G = (g_1, \dots, g_\ell)$. Then $g_i \in C(X), \pm f^* \leq g_i, i = 1, \dots, \ell$, and

(a)
$$(g_i \pm f^*)(x_j) = 0$$
 $i = 1, \dots, \ell, \ j = 1, \dots, k,$

(b)
$$\int_X f d\mu = \sum_{i=1}^k \lambda_i f(x_i)$$
 for all $f \in S$.

By Theorem 2.4, $\pm f^*$ are one-sided best simultaneous L_1 -approximations of G. This is a contradiction.

Conversely, suppose that there exist f_1, \dots, f_ℓ in C(X) such that there exist one-sided best simultaneous L_1 -approximations g_1, g_2 of F. Since dimS = n, it follows from Lemma 3.1 that we may assume that for every positive quadrature formula for S with n active points $\{x_1, \dots, x_n\}$ we have $\det[s_i(x_j)]_{n \times n} \neq 0$, where $\{s_1, \dots, s_n\}$ is any basis for S. Thus S is linearly independent over $\{x_1, \dots, x_n\}$. From Corollary 2.5 and our assumption, there exists a positive quadrature formula for S with n active points $\{x_1, \dots, x_n\}$ and $g_1(x_i) = g_2(x_i), i = 1, \dots, n$, and so $g_1 = g_2$. \square

Recall that S is a one-sided L_1 -unicity space of C(X) if for every $f \in C(X)$ there exists a unique one-sided best L_1 -approximation of f.

DEFINITION 3.4. If for all $\ell \in \mathbb{N}$, S is a one-sided ℓ -simultaneous L_1 -unicity space, then S is called a one-sided simultaneous L_1 -unicity space.

In this paper, ℓ is any natural number. Then we can rewrite Theorem 3.3 as follows.

COROLLARY 3.5. Suppose that S contains a strictly positive function and the dimension of S is $n \geq 2$. Then the following are equivalent:

- (1) S is a one-sided L_1 -unicity space of C(X).
- (2) Each positive quadrature formula for S contains at least n active points.
- (3) S is a one-sided ℓ -simultaneous L_1 -unicity space for some $\ell \in \mathbb{N}$.
- (4) S is a one-sided simultaneous L_1 -unicity space.

COROLLARY 3.6 [1]. Let S be an n-dimensional subspace of C(X) with $n \geq 2$. Assume S contains a strictly positive function. Then S is a one-sided L_1 -unicity space for C(X) if and only if each positive quadrature formula for S contains at least n active points.

THEOREM 3.7. Let S be an n-dimensional subspace of C(X) with $n \geq 2$. Then S is a one-sided simultaneous L_1 -unicity space if and only if for every $f \in S \setminus \{0\}$, the zero function is not a one-sided best simultaneous L_1 -approximation of the ℓ -tuple $(|f|, \dots, |f|)$ for any $\ell \in \mathbb{N}$.

Proof. By Corollary 3.5, it suffices to show that the necessary condition is true for some $\ell \in \mathbb{N}$. Suppose not, that is, there exists $f \in S \setminus \{0\}$ for which the zero function is a one-sided best simultaneous L_1 -approximation of $(|f|, \dots, |f|)$. Since $\pm f \in S((|f|, \dots, |f|))$, $\int_X \pm f d\mu = 0$. Thus $\pm f$ are one-sided best simultaneous L_1 -approximations of $(|f|, \dots, |f|)$, which is a contradiction.

Conversely, suppose that there exists $F = (f_1, \dots, f_\ell)$ such that F has distinct one-sided best simultaneous L_1 -approximations g_1 and g_2 . Set $f^* = (g_1 - g_2)/2$ and $h_i = f_i - (g_1 + g_2)/2$, $i = 1, \dots, \ell$. Let $H = (h_1, \dots, h_\ell)$. Then $\pm f^*$ are one-sided best simultaneous L_1 -approximations of H. So $|f^*| \in S(H)$. Let $|F^*| = (|f^*|, \dots, |f^*|)$. Then $S(|F^*|) \subset S(H)$ and $|f^*| \in S(|F^*|)$. Thus $\pm f^*$ are one-sided best simultaneous L_1 -approximations of $|F^*|$ and the zero function is a one-sided best simultaneous L_1 -approximation of $|F^*|$. It is a contradiction. \square

COROLLARY 3.8 [1]. A subspace S of C(X) is a one-sided L_1 -unicity space if and only if for every $f \in S \setminus \{0\}$, the zero function is not a one-sided best L_1 -approximation of |f|.

As an immediate consequence of this theorem, we have the following three results.

COROLLARY 3.9. A finite dimensional subspace S of C(X) is a one-sided simultaneous L_1 -unicity space if and only if for each $f \in S \setminus \{0\}$ there exists $g \in S$ satisfying

- (a) $g \le |f|$,
- (b) $\int_{X} g d\mu > 0$.

COROLLARY 3.10. A finite dimensional subspace S of C(X) is a one-sided simultaneous L_1 -unicity space if and only if S is a one-sided L_1 -unicity space.

COROLLARY 3.11. Let S be a finite dimensional subspace of C(X) and assume that S contains a strictly positive function. Then S is a one-sided simultaneous L_1 -unicity space if and only if for each $f \in S \setminus \{0\}$, there exists $g \in S$ satisfying

- (a) $g \leq 0$ on Z(f),
- (b) $\int_{X} g d\mu > 0$.

Note that int(X) denotes the interior of X.

COROLLARY 3.12. Let S be an n-dimensional subspace of C(X) with $n \geq 2$. Assume that int(X) is connected and there exists $f^* \in S$ such that $f^* > 0$ on int(X). Then S is not a one-sided simultaneous L_1 -unicity space.

Proof. By [1], S is not a one-sided L_1 -unicity space. By Corollary 3.10, S is not a one-sided simultaneous L_1 -unicity space. \square

The condition that S contains a strictly positive function on int(X) is essential. If $S = \text{span}\{x, |x|\}$ on X = [-1, 1], then for every $f \in S$, $|f| \in S$, and therefore by Theorem 3.7, S is a one-sided simultaneous L_1 -unicity space. The condition that the int(X) is connected is also necessary. To see this, let S be as previously defined, and

$$X = \{(x, y) : |y| \le |x| \le 1\}.$$

Again, Theorem 3.7 implies that S is a one-sided simultaneous L_1 -unicity space.

Note that [X] denotes the number of connected components of X.

THEOREM 3.13. Let S be an n-dimensional subspace of C(X), $n \ge 2$. Assume that S contains a strictly positive function and $[X] \le (n-1)$. Then S is not a one-sided simultaneous L_1 -unicity space.

Proof. By [1], S is not a one-sided L_1 -unicity space. By Corollary 3.5, S is not a one-sided simultaneous L_1 -unicity space. \square

By the following examples, if $[X] \geq n$, then the above theorem simply does not hold.

EXAMPLE 3.14. (1) Let $X = [0,1] \cup [2,3]$ and $S = \text{span}\{s_1, s_2, s_3\}$ where $s_1 = \chi_{[1,2]}$, $s_2 = x \cdot \chi_{[2,3]}$ and $s_3 = x^2$. Clearly, S contains a strictly positive function on X. Then by Theorem 3.13, S is not a one-sided simultaneous L_1 -unicity space. Moreover, S has a positive quadrature formula with two active points $\{1, 34/15\}$ and $\lambda_1 = 1$, $\lambda_2 = 75/68$.

- (2) Let $X = \bigcup_{i=1}^{n} A_i$, where A_1, \dots, A_n are distinct components of X and let s_i be strictly positive on A_i which vanish elsewhere. Set $S = \text{span}\{s_1, \dots, s_n\}$. Then [X] = n. By Theorem 3.7, S is a one-sided simultaneous L_1 -unicity space.
- (3) Let $S = \text{span}\{1, x\}$ on $X = [-2, -1] \cup [1, 2]$ where μ is the Lebesgue measure. Since

$$\begin{split} &\int_X 1 \mathrm{d}\mu = 2 = 2 \cdot 1(t) & \quad \text{for any} \quad t \in X \\ &\int_X x \mathrm{d}\mu = 0 \neq 2 \cdot x(t) & \quad \text{for any} \quad t \in X, \end{split}$$

S is a one-sided simultaneous L_1 -unicity space since there does not exist a positive quadrature formula for S with one active point in X.

LEMMA 3.15 [1]. Let S be a finite dimensional subspace of C(X). There exist points x_1, \dots, x_m such that if $f \in \mathcal{S}$ satisfies $f(x_i) \leq 0$, $i = 1, \dots, m$ and $\int_X f d\mu \geq 0$, then f = 0.

PROPOSITION 3.16. If S is a finite dimensional subspace of C(X), then the set

 $\{F: F \text{ has a unique one-sided best simultaneous } L_1$ -approximation}

is dense in $\{F: S(F) \text{ is nonempty}\}$ with L_1 -norm.

Proof. Let $F = (f_1, \dots, f_\ell)$ be with $S(F) \neq \phi$. There exist points x_1, \dots, x_m such that if $f \in S$ satisfies $f(x_i) \leq 0$, $i = 1, \dots, m$ and $\int_X f d\mu \geq 0$ then f = 0. Choose any $h \in S(F)$. Given $\varepsilon > 0$, for all $i = 1, \dots, \ell$, let $g_i \in C(X)$ satisfy $h \leq g_i, h(x_j) = g_i(x_j), j = 1, \dots, m$, and

$$||f_i - g_i||_1 < \varepsilon/\ell.$$

Let $G = (g_1, \dots, g_{\ell})$. Then

$$||F - G|| = \max_{\|\mathbf{a}\|_{1}=1} ||\sum_{i=1}^{\ell} a_{i}(f_{i} - g_{i})||_{1}$$

$$\leq \sum_{i=1}^{\ell} ||f_{i} - g_{i}||_{1}$$

$$< \varepsilon.$$

We claim that G has a unique one-sided best simultaneous L_1 -approximation. By our construction, $h \in S(G)$. If k is a one-sided best simultaneous L_1 -approximation of G, then for all $i = 1, \dots, \ell$,

$$k(x_j) \le g_i(x_j) = h(x_j)$$
 $j = 1, \dots, m,$
$$\int_X k d\mu \ge \int_X h d\mu.$$

Set w = k - h. Then $w(x_i) \leq 0$, $i = 1, \dots, m$, and $\int_X w d\mu \geq 0$. From Lemma 3.15, w = 0. Thus k = h. Hence G has a unique one-sided best simultaneous L_1 -approximation h. \square

COROLLARY 3.17 [1]. If S is a finite dimensional subspace of C(X), then the set $\{f : f \text{ has a unique one-sided best } L_1\text{- approximation}\}$ is dense in $\{f : S(f) \neq \phi\}$ with $L_1\text{-norm}$.

References

1. Allan. M. Pinkus, On L¹-approximation, Cambridge University Press, 1988.

Sung Ho Park
Department of Mathematics
Sogang University
CPO. 1142
Scoul 121-742, Korea

Hyang Joo Rhee Department of General Studies Duksung Women's University 419 Ssang Mun-Dong, Tobong-Ku Seoul 131-714, Korea