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APPROXIMATION ORDER TO A FUNCTION IN C*[0,1] AND
ITS DERIVATIVE BY A FEEDFOWARD NEURAL NETWORK

Naumwoo Haum!AND BuM IL HoNg*

ABSTRACT. We study the neural network approximation to a function in C Lo, 1]
and its derivative. In [3], we used even trigonometric polynomials in order to
get an approximation order to a function in L, space. In this paper, we show
the simultaneous approximation order to a function in C?{0,1] using a Bernstein
polynomial and a feedforward neural network. Our proofs are constructive.
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1. Introduction

Approximation by a feedforward neural network has been studied by many
researchers since it has many applications in engineerings and computer science.
In neural network theory, basically we have two problems. The first problem
is the density problem which is related to the question of representing a target
function arbitrarily closed by a neural network. The second problem is the
complexity problem that is related to the degree of approximation. If we have
an approximation order to a complexity problem, then a density result by neural
network is trivial.

Hong and Hahm [2] showed complexity results to a continuous function by a
neural network with sigmoidal activation function. In [7], Mhaskar and Hahm
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introduced the generalized translation networks. A feedforward neural network
with n neurons is of the form ‘

icia(ai T+ bi) (1.2)
i=1

where a;, b; and ¢; are real numbers for 1 < i < n and o is a real-valued function
defined on R. Using the generalized translation network, Hahm and Hong [3]
obtained the complexity result to a function in L, space.

Recently, the simultaneous approximation of a function and its derivatives
has been studied by some researchers. In [1], Gallent and White introduced
the problem of the simultaneous approximation to the neural network and they
proved the density result using Maclaurin theorem. Li [5] also showed the density
result for a multivariate function and its derivative. In [1, 5], they only showed
the density results related to simultaneous approximation.

In this paper, we show the simultaneous approximation order to a C'[0, 1]
function and its derivative by a feedforward neural network. First of all, we
approximate a function and its derivative by a Bernstein polynomial and then
approximate that Bernstein polynomial by a feedforward neural network. Our
proofs are constructive and we examine our results using numerical examples.

2. Preliminaries

If a function f(z) is defined in [0, 1], then the Bernstein polynomial of degree
n is given by

=~ k. (n -
Balhe) =31 () o (2.1
From the binomial theorem [8], we can easily derive the followings.

Lemma 2.1. For z € [0, 1], we have
n—1

Y (”; 1) ah(l—z)"h =1
5
(2) Z m(n ;; 1) 2*(1 - )"kl = (n - 1)z
k=0
n-1 _1
3) Z K* (n & ) ¥l -2)" 1 = (n - De((n— Dz + 1 - 2).
k=0

From Lemma 2.1, we can easily obtain the following.
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n—1

Lemma 2.2. IfT(z) = Z(k—(n—l)x)2 (n ; 1) ¥ (1—z)" % forz € [0, 1],
k=0
n—1

4
Proof. By Lemma 2.1, we have

n—1
T(z) = Z(k —(n—1)z)? (n; 1> k(1 — )kt
k=0

then ||T|oo,0,1) <

n—1

2 2 n—1 n—k—1
:kzz%{k —2(n-z+(n-1) x2}< k )xk(l—x)
=(n-— 1)z{(n -2z+1—(n— 1j)x}
=(n—1)(z —z?).
Thus |T(z)| < n—l for any z € [0, 1]. O

In order to represent the simultaneous approximation order, we use the fol-
lowing definition.

Definition 2.3. For f € C[0, 1], we define

wo(f,8) = sup{lf(fv) W) eyl < 6} (23
and

or(1,8) = sup{|7'0) - £ )] 1o 3l < 5} (2.0
for § >0 and z,y € [0,1].

Note that wg and w; satisfy the followings.

(1) wo and w; are non-decreasing.

(2) wi(f, ad) < (a+ Lw;(f, ) for a positive real number o and ¢ = 0, 1.

(3) wi(f, a+8) < wi(f, a)+wi(f, B) for positive real numbers o, and i =0, 1.

Throughout the paper, the letters d, ¢, c1, ¢z, ¢s, - - - will denote positive con-
stants and their values may be different at different occurrences. In addition, n
denotes a natural number that is greater than 1.

3. Main results

In this section, we show the simultaneous approximation order to a function
in C{0, 1] by a Bernstein polynomial.



142 N. Hahm and B. 1. Hong

Theorem 3.1. For f € C*|0,1], we have

1= Balleson < 160 (£, 72) (31)
and ) .
= BaPlhton < e (£ 7 (3.2
where ¢; and ¢y are positive constants which are independent of n.
.Proof. The proof of ||f — Bn(f)l|ee < 1w (f, —\/1;1_—) is given in [6].
By mean value theorem, we have
B, (f,z)
:Zf(%) (Z) [kzF (1 — 2)" % + (n — k)a* (1 — z)" 1 7¥]
e R (i FUTR ()
Je 0
— Z f;(ek ( ) k(l x}n—l—k

k k+1
where - < Or < —:;—— For any z € [0, 1],

If’(w") — By (f,2)|
< Z lf/ f’(g ( P 1) x"(l ~-w)n-l-—k

< Z ('n n 1) oh(1 = gy (3.4)

+ Z ( 1) a:k(l - x)”‘l_k.

For a given 6 > 0 and To, Yo € [0, 1] with zp < yo, we set that a := a(zo, ¥o, )

Yo ; 930] where [-] is the Gauss function. Fori =1,2,---,a+1,

we set 0; = xg + (%;—31;9)2'. Then

Fla)-f

— 1'(6x)

is an integer [

|/ (@o) — £/ (wo)l < Y _If (Bixr) — F'(B)| < (e + Lwr (£, 6). (3.5)

=0
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By Lemma 2.2 and Lemma 3.1, we have

kﬁ;j r@ -l (") st e

<wi(f,6 :i[a(w, ,0) + 1] ( P 1) k(1 — )" ik
<n(f,9) [a(z Lo () arn] (36)

<wi(f,0) [!L-l(——"’— oy (“ - 1) 2H(1 = a)rik 4 1}
B 762 n—1 k
k=0

<wn(f,9) (m " 1)'

If we choose § = —1— then

V=T
Z I (z) - _____)| ( ) Pl — )"k < cw1< :/72;1_:1) (3.7)

for some positive constant ¢ which is indepedent of n. Now we compute the last
part of (3.4).

= ok ' n—1 k n—1-k
fl——=)—f(0 z5(1 — )
Y1 -re (")

Szwl(f,ﬁ) (n;l) *(1 — z)nik (3.8)

k=0

By (3.7) and ({3.8), we have

L = Bi(lloo,jo.n) < cwr (f, \/7%) + wy (f, *_1) = cowy (f, \/7'{1“:1>

where ¢, is a positive constant which is independent of n. a

Now we show the density result for a target function and its derivative using
a feedforward neural network.
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Theorem 3.2. Let ¢ be a C*® function. Suppose that there erists a € R such
that o™ (a) # 0 for any nonnegative intger m. Then for a given € > 0 and a
n

polynomial P,(x) = Zaixi, there exists a feedforward neural network
=0

i 1 & i (N
Npn(o,z) = Z;a@%(—i)(—a)- j;o(ml) <J> o(jhz + a)

such that
1P = No,n(0)loo,fo,11 < € and [P, = Ny p(0)lloo,py <€ (3.9)

for sufficiently small h > 0.

. 1 : L _
Proof. Let € > 0 be giver. Note that m ;(wl)@ Yo(jhz + a) — z* a8

h — 0. Therefore we can easily see that || P, — Ny 1(0)||oo, (0,1 < € for sufficiently
small h > 0. Note that

N;a,h(oa :1,‘)
n

2205%?(15@ (-1)i (§>a’(jhw+a)jh _
=0

G0 (3‘10)

M
n . i—1 )

= v i1t 1 oo
;azhi—lg(i) (a) JLV:_%( 1) ( j ) o ((] + 1)}“; 4 a)‘

Now we use the Taylor formula. For any natural number [ > n— 1, the equation
(3.10) can be rewritten as

N'rlx,h(0-7 .’B}
n , i—1
J g1 (=1
=2 TS —1)=i-t ( . )a’ hz +a : 3.11
; zh“‘“la(‘)(a) Jgo( ) j (jhz + a) ( )
n ; i—1 . -1 (r+1) (5
oy yiej-1 =1 o (jhz +a),. |,
+ gaz hi—1g(0)(g) Jzz;)( 1) < j ) (; — (jz)

n . i1 . l+1) .
. i qyimje1 B 1 oV (Ghz +a+0) !
+ ;az'hi—lg(i} () ;}( 1) ( j ) ( i (hz)
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where 6 is a point between jhz +a and (j + 1)hx + a. Since
n i i—1 i 1 n
i—i—1 - Iy _ ; !
Zaim Z(—l)Z J ( j ) g (Jh$+a) —ZaﬂNm_l,h(U ,:U)
1=0 j=0 =0
and the last two terms of (3.11) have the accuracy O(h) respectively, we have
1Py, = Ny ()] loo,0,11 < €
for sufficiently small h > 0. d

Theorem 3.3. Let f € C[0,1] and o be a C*™ function. Suppose that there

ezists a € R such that o™ (a) # 0 for any nonnegative integer m. Then there
exists a feedforward neural network Ny n(o,x) such that

17 = Non@)llooso < 60, ) (312)
and )
1 = N p(@lec o < e (£ ) (3.13)

for sufficiently small h > 0 and some positive constants c1 and c2 which are
independent of n.

Proof. Let € > 0 be given. By Theorem 3.1, there exists a Bernstein polynomial
B, (f, ) such that

1F = BalDllwion < cxwo (£, 72) (314
and )
1 = BDllosos < exen (£ 7==5 ) (3.15)

Moreover, by (3.9), there exists a feedforward neural network Ny n(c,z) such
that

1By~ Nan(@lloofo) < ¢ and [[By— Nip(@)lloojoy <& (3.16)

for sufficiently small & > 0. Therefore, from (3.14), (3.15) and (3.16), we have

1
17 = Moo < cxon(f, 7=) +
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and

' = N n(0)loo 0,2y < c2wn (f ’ \/51——1 ) e

Since € > 0 is arbitrary, we get (3.12) and (3.13). O

4. Numerical results

We demonstrate numerical results to support our theoretical results. We
proved in Theorem 3.3 that the differentiable target function over [0, 1] can be
simultaneously approximated by a neural network. To show this, we select e
as a target function and cosz as an activation function of the neural network.

Note that cos(™(w/4) # 0 for any nonnegative integer n.
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Figure 1. The target function and a neural network with n = 2 and n = 6.
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Figure 2. The derivative of the target function and the derivative
of a neural network with n =2 and n = 6.
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Even though Figure 1 and Figure 2 show that the approximation order to
the derivative of a target function by the derivative of a neural network is lower
than that to a target function by a neural network, Figure 2 clearly shows that
the derivative of a target function can be approximated well by the derivative
of a neural network as the number of hidden units increase. We will investigate
the approximation order to the nth derivative of a target function by the nth
derivative of a neural network in the future.
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