Browse > Article
http://dx.doi.org/10.14317/jami.2011.29.3_4.713

QUASI-INTERPOLATORY APPROXIMATION SCHEME FOR MULTIVARIATE SCATTERED DATA  

Yoon, Jung-Ho (Department of Mathematics, Ewha W. University)
Publication Information
Journal of applied mathematics & informatics / v.29, no.3_4, 2011 , pp. 713-719 More about this Journal
Abstract
The problem of approximation from a set of scattered data arises in a wide range of applied mathematics and scientific applications. In this study, we present a quasi-interpolatory approximation scheme for scattered data approximation problem, which reproduces a certain space of polynomials. The proposed scheme is local in the sense that for an evaluation point, the contribution of a data value to the approximating value is decreasing rapidly as the distance between two data points is increasing.
Keywords
'Shifted' thin-plate spline; polynomial reproduction; quasi-interpolation; Scattered data approximation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. J. D. Powell, The Theory of Radial Basis Function Approximation in 1990, Advances in Numerical Analysis Vol. II:Wavelets, Subdivision Algorithms and Radial Basis Functions (W.A. Light ed.), Oxford University Press, (1992), 105-210.
2 H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 2005.
3 Z. Wu and R. Schaback, Local Error Estimates for Radial Basis Function Interpolation of Scattered Data, IMA J. Numer. Anal., 13 (1993), 13-27.   DOI   ScienceOn
4 J. Yoon, Approximation in $L_{p}(R^{d})$ from a Space Spanned by the Scattered Shifts of a Radial Basis Function, Constr. Approx. 17 (2001), 227-247.   DOI   ScienceOn
5 J. Yoon, Computational Aspects of Approximation to Scattered Data by Using 'Shifted' Thin-Plate Spline, Adv. Comp. Math. 14 (2001), no. 4, 329-359.   DOI   ScienceOn
6 N. Dyn and A. Ron, Radial basis function approximation: from gridded centers to scattered centers, Proc. London Math. Soc. 71 (1995), 76-108.   DOI
7 G. B. Folland, Real Analysis, John Wiley & Sons, New York, 1984.
8 W. R. Madych and S. A. Nelson, Multivariate Interpolation and Conditionally Positive Functions I, Approx. Theory Appl. 4 (1988), 77-89.
9 I.M. Gelfand and G.E. Shilov, Generalized Functions, Vol. 1, Academic Press, 1964.
10 D. Levin, The approximation power of moving least-squares, Math. Comp. 67 (1998), 1517- 1531.   DOI   ScienceOn
11 W. R. Madych and S. A. Nelson, Multivariate Interpolation and Conditionally Positive Functions II, Math. Comp. 54 (1990), 211-230.   DOI   ScienceOn
12 N. Dyn, Interpolation and Approximation by Radial and Related Functions, Approximation Theory VI, (C. K. Chui, L. L. Schumaker and J. Ward eds.), Academic press, (1989), 211- 234.
13 M. Abramowitz and I. Stegun, A Handbook of Mathematical Functions, Dover Publications, New York, 1970.
14 M. D. Buhmann, Radial Basis Functions, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2004.
15 M. D. Buhmann, N. Dyn, and D. Levin, On quasi-interpolation with radial basis functions with scattered centres, Constr. Approx. 11 (1995), 239-254.   DOI   ScienceOn
16 N. Dyn, I.R.H. Jackson, D. Levin, and A. Ron, On Multivariate Approximation by Integer Translates of a basis Function, Israel J. Math. 78 (1992), 95-130.   DOI   ScienceOn