• Title/Summary/Keyword: Sound Transmission Loss (STL)

Search Result 23, Processing Time 0.204 seconds

Measurement of sound Insulation of small-size windows (소형 창문의 차음성능 측정에 관한 고찰)

  • Kim, Sang-Ryul;Kang, Hyun-Ju;Kim, Jae-Seung;Kim, Hyun-Sil;Kim, Bong-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.942-945
    • /
    • 2006
  • In order to measure the sound transmission loss(STL) of a test specimen such as windows, which is smaller than the test opening, a special partition is built into the test opening and the specimen is placed in that partition. This paper discusses how the measured STL is changed by the partition when a small-size window of high sound insulation is mounted. Theoretical and experimental investigations are carried out to quantify the effect of the filler wall. The results reveal that the smaller the window size is, the higher sound insulation performance of the filler wall is required in order to measure the accurate STL of the specimen. It is found that the insufficient sound insulation of the filler wall leads to the lower measured value of the window's STL.

  • PDF

Prediction Model of the Sound Transmission Loss of Honeycomb Panels for Railway Vehicles (철도차량용 허니콤재의 차음성능 예측모델)

  • Kim, Seock-Hyun;Paek, In-Su;Lee, Hyun-Woo;Kim, Jeong-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.465-470
    • /
    • 2008
  • Sound transmission characteristics are investigated on the honeycomb panels used for railway vehicles. Equivalent orthotropic plate model and equivalent mass law are applied to predict the sound transmission loss (STL) of the honeycomb panels. The predicted values of the STL are compared with the measured values. The reliability and the limitation of the prediction models are investigated. Coincidence effect and local resonance effect on STL are considered. The result of the study shows that the equivalent orthotropic plate model can be used as a good prediction model, if the local resonance frequency is properly applied. finally, ways to improve the severe STL drop by local resonance are proposed and the effect on the sound insulation performance is analysed.

A study on the sound transmission through double plates installed inside an impedance tube (임피던스 튜브 내에 설치된 이중 평판의 음파투과연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Seo, Yun-Ho;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.253-260
    • /
    • 2016
  • In this paper, derivation of the STL (Sound Transmission Loss) of the double plates installed in an impedance tube is discussed using an analytic method, where an air cavity exists between the plates. Vibration of the plates and sound pressure field inside the tube are expressed in terms of infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results, and locations of peaks and dips are investigated. It is determined that the peak frequencies of the double plates coincide with those of each single plate. When the two plates are identical, the STL of the double plates as well as that of the single plate become zero at the natural frequencies of the single plate. The location and amplitude of the dips are investigated using an approximation solution when the cavity depth is very small.

Investigation for effect of the specimen location on sound transmission loss measurement (차음성능시험에서 시편설치위치에 대한 실험적 고찰)

  • 김상렬;강현주;김재승;김현실;김봉기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1234-1237
    • /
    • 2002
  • When measuring sound transmission loss (STL) in a laboratory, the specimen location in test aperture affects considerably the measuring accuracy through the influence of so-called “tunneling effect” In this paper, for a single panel and a double panel with air cavity, experimental STL evaluations on various specimen locations on test aperture were carried out to explain the phenomenon. It is shown that the difference of STL is more than 2dB especially at the low frequency region and the case of the center-located panel yielded the lower STL than that of flushing with the end of tunnel, which confirms that the tunneling effect plays an important role in STL measurement.

  • PDF

Improvement of Sound Transmission Loss of Ship's Bulkhead at Low Frequency Range (선박 격벽의 저주파수 대역 차음성능 향상에 관한 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.167-168
    • /
    • 2009
  • The noise sources in ship and offshore structure have an influence on adjacent receiving area through a partition between noise sources and receiving area. The partition in ship is usually made of stiffened plate. Sound transmission loss (STL) of the partition at high frequency could be improved by additional installation of insulation or wall panel. At low frequency, however, it is very difficult and needs an increase of plate thickness which causes a considerable weight increase of ship. In this paper, we have investigated the effect of the bulkhead boundary condition. From measurement result, we found that the bulkhead boundary condition can affect a lot in STL, especially at low frequency range. Finally, we get the 5dB increase in STL through the modification of boundary condition.

  • PDF

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

Evaluation of Sound Insulation Performance of a Unit Cabin Mock-up (유니트 캐빈 목업(mock-up)의 차음성능평가)

  • Kim, Hyun-Sil;Kim, Sang-Ryul;Kim, Bong-Ki;Kim, Jae-Seung;Lee, Sung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Sound insulation performance of a unit cabin mock-up is studied, where two identical rooms simulating cruise ship cabin are installed. STL (Sound Transmission Loss) measurement in the mock-up shows that STL of the partition between rooms is degraded by imperfect door ceiling and gap between wall and floor. It is also observed that gap around lighting and electrical outlet slightly affect the STL in high frequency ranges, since lighting and electrical outlet are supported by mineral wool in the back side due to fire-resistance requirement. Even after all possible gaps are sealed, STL of the partition is found to be lower than that measured in the laboratory by 9 dB. Measurement of SBN (Structure-Borne Noise) reveals that flanking transmission of SBN along the steel deck floor can severely deteriorate STL of the partition. Statistical energy analysis (SEA) of the mock-up confirms importance of the floor SBN control, in which increasing damping is essential to ensure high STL.

Comparison of Sound Transmission Loss Through Single and Double with Vacuum Layer Polymer Soundproof Panel (단일 구조 및 진공층이 있는 이중 구조 폴리머 방음패널의 음향투과손실 비교)

  • Lee, Ju Haeng;Kim, Ilho;Ahn, Kwang ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.11-15
    • /
    • 2013
  • PURPOSES : This study is to compare sound transmission loss(STL) value depending on the four kinds of materials, PC(Polycarbonate), PMMA(Polymethyl mathacrylate), PE(Polyethlyene), PP(Polypropylene), and two types of structure, single layer and double with vacuum layer, of soundproof panel. METHODS : With four sorts of polymer material, the specimens were made as various structures, 4 mm and 8 mm of single soundpoof panel and vacuum layered 4 mm of one. The experimental condition and procedures were complied with authorized process test, KS F 2808. RESULTS : STL of single panel made of PC were the greatest followed by PMMA, PE, PP regardless of the thickness of panel, However, STL of PMMA panel began to decrease around 2500 Hz and reached the lowest value among others in 5000 Hz. Vacuum layer soundproof panel showed good performance in more than 2000 Hz. Only vacuum layer panel made of PC presented resonance frequency at 800 Hz while that of other vacuum ones at 1000 Hz. CONCLUSIONS : According to results of single layer, it was found that single panel functioned as the theorical way we expected in terms of surface density. That trends were blurred as the panel got thicker. And it was suggested also that vacuum layer panel performed well at high frequency, more than 2000 Hz.

An Analysis of the Sound Transmission through a Plate Installed inside an Impedance Tube (임피던스 튜브 내에 설치된 평판의 음파투과해석)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • In this paper, derivation of the STL (Sound Transmission Loss) of a square plate installed in an impedance tube is discussed using an analytic method. Coupled motion of the plate vibration and acoustic field is considered. Vibration of the plate and pressure field inside the tube are expressed in terms of the infinite series of modal functions. Under the plane wave assumption, it is shown that consideration of the first few modes yields sufficiently accurate results. When the boundary of the plate is clamped, vibration mode is assumed as a multiplication of the beam modes corresponding to the crosswise directions. The natural frequencies of the clamped plate are calculated using the Rayleigh-Ritz method. It is found that the STL shows a dip at the lowest natural frequency of the plate, and increases as the frequency decreases below the natural frequency. Comparison of the result in this paper with the STL obtained by measurements and FE computations in the reference shows an excellent agreement.

Effect of the measurement error of reverberation time on the STL (잔향시간 측정 오차의 차음손실에 대한 영향)

  • 신성환;이정권;강현주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1099-1103
    • /
    • 2001
  • In room acoustics, reverberation time (RT) is the most important and general factor that represents character of room or inner space. However, RT, especially in low frequency range, can have the different value according to the measuring points and methods. This study comprehends the cause of error occurring dominantly in low frequency range when RT is measured and examines that the each error of RT measured in the cabin and reverberation chamber having different properties, influences what extent on sound transmission loss (STL)

  • PDF