• Title/Summary/Keyword: Solvothermal synthesis

Search Result 66, Processing Time 0.03 seconds

A Synthesis of Spherical Shape $TiO_2-SiO_2$ Complex via Solvothermal Process and Thermal Properties at Non-Isothermal (용매열합성을 이용한 구형 $TiO_2-SiO_2$ 복합체 제조 및 열적특성)

  • Cho Tae-Hwan;Park Seong-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.141-147
    • /
    • 2005
  • Nanomaterial $TiO_2-SiO_2$ was synthesized by hydrolysis and condensation process using 2-propanol(2-PrOH) and was characterized by FT-IR, DSC, XRD and FE-SEM. FT-IR spectra were measured to investigate Ti-0-Si absorption peak. DSC thermal analysis results appllied to Ozawa equation were used to calculate to activation energy of crystallization. It was found that the changes of X-ray diffraction patterns and FWHM obtained XRD measurement depended on calcination temperature. In FE-SEM analysis, particle size changed by quantity changes of Ti-alkokide.

  • PDF

Preparation of Zeolite Coated with Metal-Ferrite and Adsorption Characteristics of Cu(II) (금속 페라이트가 코팅된 제올라이트의 제조와 Cu(II)의 흡착 특성)

  • Baek, Sae-Yane;Nguyen, Van-Hiep;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • In this study, a magnetic adsorbent was synthesized by growing ferrite nanoparticles substituted with metals (Me = Co, Mn, Ni) on zeolite 4A for the efficient separation of waste adsorbents present in the solution after the adsorption of Cu(II). The metal ferrite grown on the surface of zeolite was prepared by solvothermal synthesis. Characteristics of the magnetic adsorbent were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and physical property measurement system (PPMS). The saturation magnetization of the A type zeolite coated with Co-ferrite (CFZC) was the highest at 5 emu/g and the Cu(II) adsorption performance was also excellent. The adsorption results of Cu(II) on CFZC were well fitted by the Langmuir model at 298 K. Also, the adsorption of Cu(II) on CFZC follows a pseudo-second order kinetic. The Gibbs free energy values (${\Delta}G^0$) ranging from -4.63 to -5.21 kJ/mol indicates that the Cu(II) adsorption is spontaneous in the temeprature range between 298 and 313 K.

Low-temperature Synthesis of Graphene-CdLa2S4 Nanocomposite as Efficient Visible-light-active Photocatalysts

  • Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • We report the facile synthesis of graphene-$CdLa_2S_4$ composite through a facile solvothermal method at low temperature. The as-prepared products were characterized by X-ray diffraction (XRD) and by Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and BET analysis, revealing the uniform covering of the graphene nanosheet with $CdLa_2S_4$ nanocrystals. The as-prepared samples show a higher efficiency for the photocatalytic degradation of typical MB dye compared with P25 and $CdLa_2S_4$ bulk nanoparticles. The enhancement of visible-light-responsive photocatalytic properties by decolorization of Rh.B dye may be attributed to the following causes. Firstly, graphene nanosheet is capable of accepting, transporting and storing electrons, and thus retarding or hindering the recombination of the electrons with the holes remaining on the excited $CdLa_2S_4$ nanoparticles. Secondly, graphene nanosheet can increase the adsorption of pollutants. The final cause is that their extended light absorption range. This work not only offers a simple way to synthesize graphene-based composites via a one-step process at low temperature but also a path to obtain efficient functional materials for environmental purification and other applications.

Optimization of synthesis conditions and $CO_2$ capture capability of Cu-BTC Metal-Organic Framework (이산화탄소 흡착용 Cu-BTC MOF 합성 최적화)

  • Peng, Mei Mei;Hemalatha, Pushparaj;Ganesh, Mani;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.200-203
    • /
    • 2011
  • A copper-based metal organic framework (MOF) named Cu-BTC, also known as HKUST-1, was synthesized by using a solvothermal method at various synthesis temperature, time and pressure. The obtained samples were characterized with Powder X-ray diffraction (XRD) for phase structure, scanning electron microscopy (SEM) for crystal structure, and nitrogen adsorption-desorption for pore textural structure. The Cu-BTC sample was also studied for $CO_2$ adsorption. The analysis results displayed that the sample synthesized at the condition of temperature: $120^{\circ}C$, synthesis time: 12 hours, pressure: 1 bar exhibited a good crystal structure with uniform size of octahedral particles. The BET data revealed a high surface area of 1741.7 $m^2g^{-1}$ and a pore volume of 0.7137 $cm^3g^{-1}$and exhibiteda maximum $CO_2$ adsorption capacity of 170 mg/g of the sorbent at $25^{\circ}C$.

  • PDF

Electrochemical Synthesis of Metal-organic Framework (전기화학적 방법을 통한 금속 유기 골격체 합성)

  • Moon, Sanghyeon;Kim, Jiyoung;Choi, Hyun-Kuk;Kim, Moon-Gab;Lee, Young-Sei;Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.229-236
    • /
    • 2021
  • During the last two decades, metal-organic frameworks (MOFs) have been drawn attention due to their high specific surface area, porosity, and catalytic activities that allow to use in many applications such as sensor, catalysis, energy storage, etc. To synthesize MOFs hydrothermal or solvothermal method were generally used. However, these methods require high-cost equipment and long time-spend for the synthesis with multi-step process. In contrast, electrochemical synthesis has been considered as a simple and easy process under the ambient conditions. In this review, we described the mechanism of electrochemical MOFs synthesis by the number of configured electrodes system, with the recent reports of various applications.

Binary transition metal sulfides hierarchical multi-shelled hollow nanospheres with enhanced energy storage performance (향상된 에너지 저장 능력을 가진 이중 전이금속 황화물 계층적 중공 구조의 나노구)

  • Lee, Young Hun;Choi, Hyung Wook;Kim, Min Seob;Jeong, Dong In;Tiruneh, Sintayehu Nibret;Kang, Bong Kyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.112-117
    • /
    • 2018
  • The metal alkoxide, CuCo-glycerate nanospheres (NSs), were successfully synthesized as Cu-Co bimetallic sulfides hierarchical multi-shelled hollow nanospheres ($CuCo_2S_4$ HMHNSs) through solvothermal synthesis. In this reaction mechanism, the solvothermal temperature and the amount of glycerol as a cosurfactant play significant role to optimize the morphology of CuCo-glycerate NSs. Furthermore, $CuCo_2S_4$ HMHNSs were obtained under optimized sulfurization reaction time of 10 h via anion exchange reaction between glycerate and sulfur ions. Finally, the structural and chemical compositions of CuCo-glycerate NSs and $CuCo_2S_4$ HMHNSs were confirmed through field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and electrochemical performances.

Size Control of Iron Oxide (Fe3O4) Nanoclusters according to Reaction Factors and Consequent Change in Their Magnetic Attraction (반응 인자 제어에 의한 산화철(Fe3O4) 나노클러스터의 크기와 자기 특성 조절)

  • Sanghoon Lee;Arim Byun;Jin-sil Choi
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.297-304
    • /
    • 2023
  • Iron oxide (Fe2O3) nanoclusters exhibit significant potential in the biomedical and pharmaceutical fields due to their strong magnetic properties, stability in solutions, and compatibility with living systems. They excel in magnetic separation processes, displaying high responsiveness to external magnetic fields. In contrast to conventional Fe2O3 nanoparticles that can aggregate in aqueous solutions due to their ferrimagnetic properties, these nanoclusters, composed of multiple nanoparticles, maintain their magnetic traits even when scaled to hundreds of nanometers. In this study, we develop a simple method using solvothermal synthesis to precisely control the size of nanoclusters. By adjusting precursor materials and reducing agents, we successfully control the particle sizes within the range of 90 to 420 nm. Our study not only enhances the understanding of nanocluster creation but also offers ways to improve their properties for applications such as magnetic separation. This is supported by our experimental results highlighting their size-dependent magnetic response in water. This study has the potential to advance both the knowledge and practical utilization of Fe2O3 nanoclusters in various applications.

Synthesis and Application of Magnetoplasmonic Nanoparticles (마그네토플라즈모닉 나노 자성 입자의 합성과 응용)

  • Park, Sejeong;Hwang, Siyeong;Jung, Seonghwan;Gwak, Juyong;Lee, Jaebeom
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.429-434
    • /
    • 2021
  • Magnetic nanoparticles have a significant impact on the development of basic sciences and nanomedical, electronic, optical, and biotech industries. The development of magnetic structures with size homogeneity, magnetization, and particle dispersibility due to high-quality process development can broaden their utilization for separation analysis, structural color optics using surface modification, and energy/catalysts. In addition, magnetic nanoparticles simultaneously exhibit two properties: magnetic and plasmon resonance, which can be self-assembled and can improve signal sensitivity through plasmon resonance. This paper reports typical examples of the synthesis and properties of various magnetic nanoparticles, especially magnetoplasmonic nanoparticles developed in our laboratory over the past decade, and their optical, electrochemical, energy/catalytic, and bio-applications. In addition, the future value of magnetoplasmonic nanoparticles can be reevaluated by comparing them with that reported in the literature.

Synthesis of CdSe-TiO2 Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light

  • Lim, Chang-Sung;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1657-1661
    • /
    • 2011
  • In this study, CdSe-$TiO_2$ photocatalyst were synthesized by a facile solvothermal method and characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and UV-vis diffuse reflectance spectrophotometer. The photocatalytic activity was investigated by degrading methylene blue (MB) in aqueous solution under irradiation of UV light as well as visible light. The absorbance of degraded MB solution was determined by UV-vis spectrophotometer. The results revealed that the CdSe-$TiO_2$ photocatalyst exhibited much higher photocatalytic activity than $TiO_2$ both under irradiation of UV light as well as visible light.

Synthesis of $CuInGaSe_2$ Nanoparticles for Absorber Layer of Solar Cell (태양전지 광흡수층용 $CuInGaSe_2$ 나노입자 합성)

  • 김기현;전영갑;윤경훈;박병옥
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.231-231
    • /
    • 2003
  • I-III-Ⅵ족 CuInGaSe$_2$(CIGS)계 화합물 태양전지는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지며, 전기 광학적으로 매우 안정하여 태양전지의 광흡수층으로 매우 이상적이다. CIGS 광흡수층제조를 위하여 용매열법 (solvothermal method)으로 CIGS나노입자를 합성하였다. 용매열법은 진공장비를 사용하던 기존의 방법에 비해 저온, 저압에서 저가로 합성할 수 있다는 장점을 가지고 있다. Copper, indium selenium 및 gallium 분말과 유기용매 ethylenediarnine을 autoclave안에서 반응시켜 CIGS 나노입자를 제조하였다. 280 에서 14시간동안 반응시켜 직경이 30-80 nm인 구형에 가까운 CIGS 나노입자를 얻었다. 이것은 용매열법에 의한 4성분계의 CIGS 나노입자의 최초 합성이다. diehyleneamine을 용매로 사용한 경우에 한하여 구형의 CIS 입자를 합성할 수 있다고 보고되었으나, Cu와 이중 N-chelation이 형성되는 ethylenediamine 용매임에도 불구하고 구형의 CIGS 나노분말이 형성된 것은 solution-liquid-solid (SLS) 기구로 설명할 수 있었다. HRSEM, TEM, XRD. EDS으로 나노분말의 형상 크기 및 조성을 조사하여 chalcopyrite 구조의 CuInGaSe$_2$ 임을 확인하였다.

  • PDF