DOI QR코드

DOI QR Code

Synthesis and Application of Magnetoplasmonic Nanoparticles

마그네토플라즈모닉 나노 자성 입자의 합성과 응용

  • Park, Sejeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Hwang, Siyeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jung, Seonghwan (Department of Chemistry, Chungnam National University) ;
  • Gwak, Juyong (Department of Biomaterials Science, Pusan National University) ;
  • Lee, Jaebeom (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 박세정 (충남대학교 응용화학공학과) ;
  • 황시영 (충남대학교 응용화학공학과) ;
  • 정성환 (충남대학교 화학과) ;
  • 곽주용 (부산대학교 바이오소재과학과) ;
  • 이재범 (충남대학교 응용화학공학과)
  • Received : 2021.08.27
  • Accepted : 2021.09.23
  • Published : 2021.10.28

Abstract

Magnetic nanoparticles have a significant impact on the development of basic sciences and nanomedical, electronic, optical, and biotech industries. The development of magnetic structures with size homogeneity, magnetization, and particle dispersibility due to high-quality process development can broaden their utilization for separation analysis, structural color optics using surface modification, and energy/catalysts. In addition, magnetic nanoparticles simultaneously exhibit two properties: magnetic and plasmon resonance, which can be self-assembled and can improve signal sensitivity through plasmon resonance. This paper reports typical examples of the synthesis and properties of various magnetic nanoparticles, especially magnetoplasmonic nanoparticles developed in our laboratory over the past decade, and their optical, electrochemical, energy/catalytic, and bio-applications. In addition, the future value of magnetoplasmonic nanoparticles can be reevaluated by comparing them with that reported in the literature.

Keywords

Acknowledgement

본 논문은 한국분말야금학회의 '고성능 고부가가치 미래자성소재연구회' 사업의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. H. Azab, S. El-Korashy, Z. Anwar, G. Khairy, M.-S. Steiner and A. Duerkop: Analyst, 136 (2011) 4492. https://doi.org/10.1039/c1an15049a
  2. H. Chen, F. Liu, K. Koh, J. Lee, Z. Ye, T. Yin and L. Sun: Microchim. Acta, 180 (2013) 431. https://doi.org/10.1007/s00604-013-0943-5
  3. S. C. Hong, H. Chen, J. Lee, H.-K. Park, Y. S. Kim, H.-C. Shin, C.-M. Kim, T. J. Park, S. J. Lee and K. Koh: Sens. Actuators, B, 156 (2011) 271. https://doi.org/10.1016/j.snb.2011.04.032
  4. J. Wang, W. Meng, X. Zheng, S. Liu and G. Li: Biosens. Bioelectron., 24 (2009) 1598. https://doi.org/10.1016/j.bios.2008.08.030
  5. K. L. Goeken, V. Subramaniam and R. Gill: Phys. Chem. Chem. Phys., 17 (2015) 422. https://doi.org/10.1039/c4cp03739a
  6. J. Kim, V. T. Tran, S. Oh, C.-S. Kim, J. C. Hong, S. Kim, Y.-S. Joo, S. Mun, M.-H. Kim and J.-W. Jung: ACS Appl. Mater. Interfaces, 10 (2018) 41935. https://doi.org/10.1021/acsami.8b14156
  7. J. Majoinen, J. Hassinen, J.S. Haataja, H. T. Rekola, E. Kontturi, M. A. Kostiainen, R. H. Ras, P. Torma and O. Ikkala: Adv. Mater., 28 (2016) 5262. https://doi.org/10.1002/adma.201600940
  8. J. Luo, J. Liu, Z. Zeng, C. F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen and H. J. Fan: Nano Lett., 13 (2013) 6136. https://doi.org/10.1021/nl403461n
  9. W. Qi, X. Li, H. Li, W. Wu, P. Li, Y. Wu, C. Kuang, S. Zhou and X. Li: Nano Res., 10 (2017) 2923. https://doi.org/10.1007/s12274-017-1502-x
  10. K.-Y. Lien, L.-Y. Hung, T.-B. Huang, Y.-C. Tsai, H.-Y. Lei and G.-B. Lee: Biosens. Bioelectron., 26 (2011) 3900. https://doi.org/10.1016/j.bios.2011.03.006
  11. Y. Sun, Y. Tian, M. He, Q. Zhao, C. Chen, C. Hu and Y. Liu: J. Electron. Mater., 41 (2012) 519. https://doi.org/10.1007/s11664-011-1800-0
  12. D. Liu, C. Wang, K.-J. Jeong and J. Lee: J. Alloys Compd., 832 (2020) 152824. https://doi.org/10.1016/j.jallcom.2019.152824
  13. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R. N. Muller: Chem. Rev., 108 (2008) 2064. https://doi.org/10.1021/cr068445e
  14. Y. Lin, Z. Li, Z. Chen, J. Ren and X. Qu: Biomaterials, 34 (2013) 2600. https://doi.org/10.1016/j.biomaterials.2013.01.007
  15. C. B. Garcia, Y. Zhang, S. Mahajan, F. DiSalvo and U. Wiesner: J. Am. Chem. Soc., 125 (2003) 13310. https://doi.org/10.1021/ja037116q
  16. M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutierrez, M. P. Morales, I. B. Bohm, J. T. Heverhagen, D. Prosperi and W. J. Parak: Chem. Soc. Rev., 41 (2012) 4306. https://doi.org/10.1039/c2cs15337h
  17. O. Chen, L. Riedemann, F. Etoc, H. Herrmann, M. Coppey, M. Barch, C. T. Farrar, J. Zhao, O. T. Bruns and H. Wei: Nat. Commun., 5 (2014) 1.
  18. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin and Y. Xia: Chem. Rev., 111 (2011) 3669. https://doi.org/10.1021/cr100275d
  19. N. M. Pinkerton, M. E. Gindy, V. L. Calero-DdelC, T. Wolfson, R. F. Pagels, D. Adler, D. Gao, S. Li, R. Wang and M. Zevon: Adv. Healthcare Mater., 4 (2015) 1376. https://doi.org/10.1002/adhm.201400766
  20. R. W. Murray: Chem. Rev., 108 (2008) 2688. https://doi.org/10.1021/cr068077e
  21. J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz and H. Gasteiger: Energy Environ. Sci., 7 (2014) 2255. https://doi.org/10.1039/C4EE00440J
  22. Y. Song, V. Tran and J. Lee: ACS Appl. Mater. Interfaces, 9 (2017) 24433. https://doi.org/10.1021/acsami.7b06977
  23. P. Liu, Y. Wang, L. Han, Y. Cai, H. Ren, T. Ma, X. Li, V. A. Petrenko and A. Liu: ACS Appl. Mater. Interfaces, 12 (2020) 9090. https://doi.org/10.1021/acsami.9b23101
  24. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A. A. Requicha: Nat. Mater., 2 (2003) 229. https://doi.org/10.1038/nmat852
  25. W. A. Lopes and H. M. Jaeger: Nature, 414 (2001) 735. https://doi.org/10.1038/414735a
  26. K.-J. Jeong, D. K. Lee, V. T. Tran, C. Wang, L. Lv, J. Park, Z. Tang and J. Lee: ACS Nano, 14 (2020) 7152. https://doi.org/10.1021/acsnano.0c02026
  27. A. Kuzyk, M. J. Urban, A. Idili, F. Ricci and N. Liu: Sci. Adv., 3 (2017).
  28. W. Yan, L. Xu, C. Xu, W. Ma, H. Kuang, L. Wang and N. A. Kotov: J. Am. Chem. Soc., 134 (2012) 15114. https://doi.org/10.1021/ja3066336
  29. J. Lv, D. Ding, X. Yang, K. Hou, X. Miao, D. Wang, B. Kou, L. Huang and Z. Tang: Angew. Chem. Int. Ed., 58 (2019) 7783. https://doi.org/10.1002/anie.201903264
  30. L. T. Tufa, K.-J. Jeong, V. T. Tran and J. Lee: ACS App. Mater. Interfaces, 12 (2020) 6598. https://doi.org/10.1021/acsami.9b18639
  31. M. Shao, L. Yan, H. Pan, I. Ivanov and B. Hu: Adv. Mater., 23 (2011) 2216. https://doi.org/10.1002/adma.201100193
  32. L. M. Monzon and J. Coey: Electrochem. Commun., 42 (2014) 42. https://doi.org/10.1016/j.elecom.2014.02.005
  33. N. Vogel, M. Retsch, C.-A. Fustin, A. Del Campo and U. Jonas: Chem. Rev., 115 (2015) 6265. https://doi.org/10.1021/cr400081d
  34. S. Oh, J. Kim, V. T. Tran, D. K. Lee, S. R. Ahmed, J. C. Hong, J. Lee, E. Y. Park and J. Lee: ACS Appl. Mater. Interfaces, 10 (2018) 12534. https://doi.org/10.1021/acsami.8b02735
  35. S. Carr: Adv. Pediatr., 59 (2012) 75. https://doi.org/10.1016/j.yapd.2012.04.016
  36. X. Wang, Y. Hu and H. Wei: Inorg. Chem. Front., 3 (2016) 41. https://doi.org/10.1039/C5QI00240K
  37. C. Van Baalen, C. Els, L. Sprong, R. Van Beek, E. Van der Vries, A. Osterhaus and G. Rimmelzwaan: J. Clin. Microbiol., 52 (2014) 1672. https://doi.org/10.1128/JCM.03575-13
  38. S. K. Gurmessa, L. T. Tufa, J. Kim, K.-I. Lee, Y.-M. Kim, V. T. Tran, H.-Q. Nguyen, T. S. Shim, J. Kim and T. J. Park: ACS Appl. Nano Mater., 4 (2020) 539.