Browse > Article
http://dx.doi.org/10.14478/ace.2021.1036

Electrochemical Synthesis of Metal-organic Framework  

Moon, Sanghyeon (Department of Advanced Science and Technology Convergence, Kyungpook National University)
Kim, Jiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Choi, Hyun-Kuk (School of Nano & Materials Science and Engineering, Kyungpook National University)
Kim, Moon-Gab (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Young-Sei (School of Nano & Materials Science and Engineering, Kyungpook National University)
Lee, Kiyoung (Department of Advanced Science and Technology Convergence, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 229-236 More about this Journal
Abstract
During the last two decades, metal-organic frameworks (MOFs) have been drawn attention due to their high specific surface area, porosity, and catalytic activities that allow to use in many applications such as sensor, catalysis, energy storage, etc. To synthesize MOFs hydrothermal or solvothermal method were generally used. However, these methods require high-cost equipment and long time-spend for the synthesis with multi-step process. In contrast, electrochemical synthesis has been considered as a simple and easy process under the ambient conditions. In this review, we described the mechanism of electrochemical MOFs synthesis by the number of configured electrodes system, with the recent reports of various applications.
Keywords
Metal-organic frameworks; Electrochemical synthesis; Anodic oxidization; Cathodic reduction; Thin film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Caddeo, R. Vogt, D. Weil, W. Sigle, M. E. Toimil-Molares, and A. W. Maijenburg, Tuning the size and shape of nanoMOFs via templated electrodeposition and subsequent electrochemical oxidation, ACS Appl. Mater. Interfaces., 11, 25378-25387 (2019).   DOI
2 W. W. Lestari, R. E. Nugraha, I. D. Winarni, M. Adreane, and F. Rahmawati, Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for green diesel production, AIP Conf. Proc., American Institute of Physics Inc., 020038 (2016).
3 M. Li and M. Dinca, Reductive electrosynthesis of crystalline metal-organic frameworks, J. Am. Chem. Soc., 133, 12926-12929 (2011).   DOI
4 M. Li and M. Dinca, On the mechanism of MOF-5 formation under cathodic bias, Chem. Mater., 27, 3203-3206 (2015).   DOI
5 J. L. Wang, C. Wang, and W. Lin, Metal-organic frameworks for light harvesting and photocatalysis, ACS Catal., 2, 2630-2640 (2012).   DOI
6 M. A. Nasalevich, M. Van Der Veen, F. Kapteijn, and J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges, CrystEngComm, 16, 4919-4926 (2014).   DOI
7 M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijn, and J. Gascon, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49, 10575-10577 (2013).   DOI
8 J. Yang, P. Xiong, C. Zheng, H. Qiu, and M. Wei, Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode, J. Mater. Chem. A, 2, 16640-16644 (2014).   DOI
9 N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans, D.E. De Vos, and J. Fransaer, A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100 (Fe), ChemElectroChem, 1, 1182-1188 (2014).   DOI
10 S. Ma and H. C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications, Chem. Commun., 46, 44-53 (2010).   DOI
11 R. Sabouni, H. Kazemian, and S. Rohani, Carbon dioxide capturing technologies: A review focusing on metal organic framework materials (MOFs), Environ. Sci. Pollut. Res., 21, 5427-5449 (2014).   DOI
12 J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43, 6011-6061 (2014).   DOI
13 J. Gascon, A. Corma, F. Kapteijn, and F. X. Llabres I Xamena, Metal organic framework catalysis: Quo vadis?, ACS Catal., 4, 361-378 (2014).   DOI
14 D. J. Tranchemontagne, J. L. Tranchemontagne, M. O'keeffe, and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1257- 1283 (2009).   DOI
15 K. Pirzadeh, A. A. Ghoreyshi, M. Rahimnejad, and M. Mohammadi, Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling, Front. Chem. Sci. Eng., 14, 233- 247 (2020).   DOI
16 K. Saini, F. Joseph, A. Ramanan, and S. Sharma Bhatia, Electrochemical synthesis of a oxalate-linked copper (II) metal organic frameworks: X-ray crystallographic structure and its magnetic properies, Mater. Today Proc., Elsevier Ltd., 9616-9621 (2017).
17 Y. Liu, Z. Ng, E. A. Khan, H. K. Jeong, C. bun Ching, and Z. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates, Microporous Mesoporous Mater., 118, 296-301 (2009).   DOI
18 T. Zhang and W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43, 5982-5993 (2014).   DOI
19 Y. Li, C. Chen, X. Sun, J. Dou, and M. Wei, Metal-organic frameworks at interfaces in dye-sensitized solar cells, ChemSusChem, 7, 2469-2472 (2014).   DOI
20 M. Zhang, Z. Y. Gu, M. Bosch, Z. Perry, and H. C. Zhou, Biomimicry in metal-organic materials, Coord. Chem. Rev., 293, 327-356 (2015).   DOI
21 H. M. Yang, X. Liu, X. L. Song, T. L. Yang, Z. H. Liang, and C. M. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr, Trans. Nonferrous Met. Soc. China, 25, 3987-3994 (2015).   DOI
22 R. Wei, H. Y. Chi, X. Li, D. Lu, Y. Wan, C. W. Yang, and Z. Lai, Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation, Adv. Funct. Mater., 30, 1907089 (2020)   DOI
23 L. L. Jiang, X. Zeng, M. Li, M. Q. Wang, T. Y. Su, X. C. Tian, and J. Tang, Rapid electrochemical synthesis of HKUST-1 on indium tin oxide, RSC Adv., 7, 9316-9320 (2017).   DOI
24 J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504 (2009).   DOI
25 K. F. Babu, M. A. Kulandainathan, I. Katsounaros, L. Rassaei, A. D. Burrows, P. R. Raithby, and F. Marken, Electrocatalytic activity of basoliteTM F300 metal-organic-framework structures, Electrochem. Commun., 12, 632-635 (2010).   DOI
26 O. M. Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995).   DOI
27 S. Khazalpour, V. Safarifard, A. Morsali, and D. Nematollahi, Electrochemical synthesis of pillared layer mixed ligand metal-organic framework: DMOF-1-Zn, RSC Adv., 5, 36547-36551 (2015).   DOI
28 F. A. A. Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tome, J. A. S. Cavaleiro, and J. Rocha, Ligand design for functional metal-organic frameworks, Chem. Soc. Rev., 41, 1088-1110 (2012).   DOI
29 C. K. Brozek and M. Dinca, Cation exchange at the secondary building units of metal-organic frameworks, Chem. Soc. Rev., 43, 5456-5467 (2014).   DOI
30 H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 123044 (2013).
31 J. Zhao, Y. Wang, J. Zhou, P. Qi, S. Li, K. Zhang, X. Feng, B. Wang, and C. Hu, A copper(II)-based MOF film for highly efficient visible-light-driven hydrogen production, J. Mater. Chem. A, 4, 7174-7177 (2016).   DOI
32 E. A. Tomic, Thermal stability of coordination polymers, J. Appl. Polym. Sci., 9, 3745-3752 (1965).   DOI
33 H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999).   DOI
34 L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, and B. Wang, Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential, ACS Appl. Mater. Interfaces., 8, 16736-16743 (2016).   DOI
35 F. Zhang, X. Zou, W. Feng, X. Zhao, X. Jing, F. Sun, H. Ren, and G. Zhu, Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism, J. Mater. Chem., 22, 25019-25026 (2012).   DOI
36 O. Shekhah, H. Wang, D. Zacher, R. A. Fischer, and C. Woll, Growth mechanism of metal-organic frameworks: Insights into the nucleation by employing a step-by-step route, Angew. Chem. Int. Ed., 48, 5038-5041 (2009).   DOI
37 O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, and C. Woll, Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy, Nat. Mater., 8, 481-484 (2009).   DOI
38 X.-L. Liu, Y.-S. Li, G.-Q. Zhu, Y.-J. Ban, L.-Y. Xu, and W.-S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols, Angew. Chem., 123, 10824-10827 (2011).   DOI
39 J.-Z. Wei, F.-X. Gong, X.-J. Sun, Y. Li, T. Zhang, X.-J. Zhao, and F.-M. Zhang, Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance, Inorg. Chem., 58, 6742-6747 (2019).   DOI
40 A. Schoedel, C. Scherb, and T. Bein, Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis, Angew. Chem.., 122, 7383-7386 (2010).   DOI
41 H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, and O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science, 329, 424-428 (2010).   DOI
42 J. Lei, R. Qian, P. Ling, L. Cui, and H. Ju, Design and sensing applications of metal-organic framework composites, Trends Anal. Chem., 58, 71-78 (2014).   DOI
43 Y. Cui, B. Chen, and G. Qian, Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications, Coord. Chem. Rev., 273, 76-86 (2014).   DOI
44 F. Zhang, T. Zhang, X. Zou, X. Liang, G. Zhu, and F. Qu, Electrochemical synthesis of metal organic framework films with proton conductive property, Solid State Ionics., 301, 125-132 (2017).   DOI
45 S. Jabarian, A. Ghaffarinejad, and H. Kazemi, Electrochemical and solvothermal syntheses of HKUST-1 metal organic frameworks and comparison of their performances as electrocatalyst for oxygen reduction reaction, Anal. Bioanal. Electrochem., 10, 1611-1619 (2018).
46 N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans, D. De Vos, and J. Fransaer, High pressure, high temperature electrochemical synthesis of metal-organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morphologies, J. Mater. Chem. A, 1, 5827-5830 (2013).   DOI
47 K. Pirzadeh, A. A. Ghoreyshi, M. Rahimnejad, and M. Mohammadi, Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation, Korean J. Chem. Eng., 35, 974-983 (2018).   DOI
48 T. R. C. Van Assche, N. Campagnol, T. Muselle, H. Terryn, J. Fransaer, and J. F. M. Denayer, On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks, Microporous Mesoporous Mater., 224, 302-310 (2016).   DOI
49 I. Stassen, M. Styles, G. Grenci, H. Van Gorp, W. Vanderlinden, S. De Feyter, P. Falcaro, D. De Vos, P. Vereecken, and R. Ameloot, Chemical vapour deposition of zeolitic imidazolate framework thin films, Nat. Mater., 15, 304-310 (2016).   DOI
50 S. Jabarian and A. Ghaffarinejad, Electrochemical synthesis of NiBTC metal organic framework thin layer on nickel foam: An efficient electrocatalyst for the hydrogen evolution reaction, J. Inorg. Organomet. Polym. Mater., 29, 1565-1574 (2019).   DOI
51 T. R. C. Van Assche, G. Desmet, R. Ameloot, D. E. De Vos, H. Terryn, and J. F. M. Denayer, Electrochemical synthesis of thin HKUST-1 layers on copper mesh, Microporous Mesoporous Mater., 158, 209-213 (2012).   DOI
52 N. Campagnol, T. R. C. Van Assche, M. Li, L. Stappers, M. Dinca, J. F. M. Denayer, K. Binnemans, D. E. De Vos, and J. Fransaer, On the electrochemical deposition of metal-organic frameworks, J. Mater. Chem. A., 4, 3914-3925 (2016).   DOI
53 J. R. Long and O. M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1213-1214 (2009).   DOI
54 S. Pal and P. K. Bharadwaj, A luminescent terbium MOF containing hydroxyl groups exhibits selective sensing of nitroaromatic compounds and Fe(III) ions, Cryst. Growth Des., 16, 5852-5858 (2016).   DOI
55 S. Couck, J.F.M. Denayer, G. V. Baron, T. Remy, J. Gascon, and F. Kapteijn, An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, J. Am. Chem. Soc., 131, 6326-6327 (2009).   DOI
56 J. Della Rocca, D. Liu, and W. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res., 44, 957-968 (2011).   DOI
57 M. Li and M. Dinca, Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition, Chem. Sci., 5, 107-111 (2014).   DOI
58 J. L. Du, X. Y. Zhang, C. P. Li, J. P. Gao, J. X. Hou, X. Jing, Y. J. Mu, and L. J. Li, A bi-functional luminescent Zn(II)-MOF for detection of nitroaromatic explosives and Fe3+ ions, Sens. Actuators, B Chem., 257, 207-213 (2018).   DOI
59 L. Wang, Z. Q. Yao, G. J. Ren, S. De Han, T. L. Hu, and X. H. Bu, A luminescent metal-organic framework for selective sensing of Fe3+ with excellent recyclability, Inorg. Chem. Commun., 65, 9-12 (2016).   DOI
60 P. Arul, N. S. K. Gowthaman, S. A. John, and M. Tominaga, Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid, Electrochim. Acta, 354, 136673 (2020).   DOI
61 S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, and R. Moos, Metal-organic frameworks for sensing applications in the gas phase, Sensors, 9, 1574-1589 (2009).   DOI
62 A. Morozan and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci., 5, 9269-9290 (2012).   DOI
63 J. R. Li, J. Sculley, and H. C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932 (2012).   DOI
64 G. Zhao, X. Sun, L. Zhang, X. Chen, Y. Mao, and K. Sun, A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes, J. Power Sources., 389, 8-12 (2018).   DOI
65 J. Vehrenberg, M. Vepsalainen, D. S. Macedo, M. Rubio-Martinez, N. A. S. Webster, and M. Wessling, Steady-state electrochemical synthesis of HKUST-1 with polarity reversal, Microporous Mesoporous Mater., 303, 110218 (2020).   DOI
66 P. Hu, X. Zhu, X. Luo, X. Hu, and L. Ji, Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A, Microchim. Acta, 187, 1-9 (2020).   DOI
67 W. Cao, Y. Liu, F. Xu, J. Li, D. Li, G. Du, and N. Chen, In situ electrochemical synthesis of Rod-Like Ni-MOFs as battery-type electrode for high performance hybrid supercapacitor, J. Electrochem. Soc., 167, 050503 (2020).   DOI