Browse > Article
http://dx.doi.org/10.14478/ace.2018.1111

Preparation of Zeolite Coated with Metal-Ferrite and Adsorption Characteristics of Cu(II)  

Baek, Sae-Yane (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Nguyen, Van-Hiep (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.1, 2019 , pp. 54-61 More about this Journal
Abstract
In this study, a magnetic adsorbent was synthesized by growing ferrite nanoparticles substituted with metals (Me = Co, Mn, Ni) on zeolite 4A for the efficient separation of waste adsorbents present in the solution after the adsorption of Cu(II). The metal ferrite grown on the surface of zeolite was prepared by solvothermal synthesis. Characteristics of the magnetic adsorbent were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and physical property measurement system (PPMS). The saturation magnetization of the A type zeolite coated with Co-ferrite (CFZC) was the highest at 5 emu/g and the Cu(II) adsorption performance was also excellent. The adsorption results of Cu(II) on CFZC were well fitted by the Langmuir model at 298 K. Also, the adsorption of Cu(II) on CFZC follows a pseudo-second order kinetic. The Gibbs free energy values (${\Delta}G^0$) ranging from -4.63 to -5.21 kJ/mol indicates that the Cu(II) adsorption is spontaneous in the temeprature range between 298 and 313 K.
Keywords
Zeolite; Ferrite; Solvothermal synthesis; Adsorption; Copper ion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. K. Jhung, Organics and heavy metals removal of electronic industrial wastewater in constructed wetland systems with oenanthe javanica, J. Korean Soc. Environ. Technol., 14, 249-255 (2013).
2 S. W. Kwon, B. W. Choi, W. M. Park, and K. S. Jun, Optimal conditions for copper recovery from IT wastewater using electro-chemical reduction, J. Korea Soc. Waste Manag., 29, 662-672 (2012).
3 J. W. Lim, S. Y. Park, and B. S. Choi, Characteristics of occupational lung cancer from 1999 to 2005, Korean J. Occup. Environ. Med., 22, 230-239 (2010).   DOI
4 S. K. Gunatilake, Methods of removing heavy metals from industrial wastewater, J. Multidiscip. Eng. Sci. Stud., 1, 12-18 (2015).
5 M. Bhagat, J. E. Burgess, A. Paula, C. G. Whiteley, and J. R. Duncan, Precipitation of mixed metal residues from wastewater utilising biogenic sulphide, Miner. Eng., 17, 925-932 (2004).   DOI
6 A. Stajcic, A. Nastasovic, J. Stajic-Trosic, and J. Markovic, Novel membrane-supported hydrogel for removal of heavy metals, J. Environ. Chem. Eng., 3, 453-461 (2015).   DOI
7 S. Lakard, C. Magnenet, M. A. Mokhter, M. Euvrard, C. C. Buron, and B. Lakard, Retention of Cu(II) and Ni(II) ions by filtration through polymer-modified membranes, Sep. Purif. Technol., 149, 1-8 (2015).   DOI
8 N. Hilal, M. Al-Abri, A. Moran, and H. Al-Hinai, Effects of heavy metals and polyelectrolytes in humic substance coagulation under saline conditions, Desalination, 220, 85-95 (2008).   DOI
9 Y. J. Liang, L. Y. Chai, X. B. Min, C. J. Tang, H. J. Zhang, Y. Ke, and X. D. Xie, Hydrothermal sulfidation and floatation treatment of heavy-metal-containing sludge for recovery and stabilization, J. Hazard. Mater., 217-218, 307-314 (2012).   DOI
10 G. J. Rincon and E. J. L. Motta, Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro coagulation/flotation, J. Environ. Manag., 144, 42-50 (2014).   DOI
11 M. Price, S. Adamovic, B. Dalmacija, L. Rajic, J. Trckovic, S. Rapajic, and M. B. Becelic-Tomin, The electrocoagulation/flotation study: The removal of heavy metals from the waste fountain solution, Process Saf. Environ. Prot., 94, 262-273 (2015).   DOI
12 J. Estelrich, E. Escribano, J. Queralt, and M. A. Busquets, Iron oxide nanoparticles for magnetically-guided and magnetically- responsive drug delivery, Int. J. Mol. Sci., 16, 8070-8101 (2015).   DOI
13 S. C. Li, T. L. Zhang, R. Z. Tang, H. Qiu, C. Q. Wang, and Z. N. Zhou, Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparti cles, J. Magn. Mater., 379, 226-231 (2015).   DOI
14 J. Wojnarowicz, A. Opalinska, T. Chudoba, S. Gierlotka, R. Mukhovskyi, E. Pietrzykowska, K. Sobczak, and W. Lojkowski, Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis, J. Nanomater., 2016, 1-15 (2016).
15 C. G. Anchieta, A. Cancelier, M. A. Mazutti, S. L. Jahn, R. C. Kuhn, A. Gundel, O. C. Filho, and E. L. Foletto, Effects of solvent diols on the synthesis of $ZnFe_{2}O_{4}$ particles and their use as heterogeneous photo-fenton catalysts, Materials, 7, 6281-6290 (2014).   DOI
16 X. H. Li, C. L. Xu, X. H. Han, L. Qiao, T. Wang, and F. S. Li, Synthesis and magnetic properties of nearly monodisperse $CoFe_{2}O_{4}$ nanoparticles through a simple hydrothermal condition, Nanoscale Res. Lett., 5, 1039-1044 (2010).   DOI
17 B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park, Y. Choi, K. Shin, Y. Lee, S. G. Kwon, H. B. Na, J. G. Park, T. Y. Ahn, Y. W. Kim, W. K. Moon, S. H. Choi, and T. Hyeon, Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high resolution T1 magnetic resonance imaging contrast agents, J. Am. Chem. Soc., 133, 12624-12631 (2011).   DOI
18 M. Y. Joe, M. S. Kim, K. S. Kim, H. Y. Choi, S. M. Jun, K. K. Lim, D. Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J. Y. Lim, Effects of precursor concentrations on structural and optical properties of ZnO nanorods grown by hydrothermal method, Appl. Sci. Converg. Technol., 19, 236-241 (2010).   DOI
19 M. Xiao, X. J. Hu, Y. Gong, D. Gao, P. Zhang, Q. X. Liu, Y. Liu, and M. C. Wang, Solid transformation synthesis of zeolites from fly ash, RSC Adv., 5, 100743-100749 (2015).   DOI
20 K. Vamvakidis, D. Sakellari, M. Angelakeris, and C. D. Samara, Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization, J. Nanopart. Res., 15, 1-11 (2013).
21 R. Kesavamoorthi, A. N. Vigneshwaran, V. Sanyal, and C. R. Raja, Synthesis and characterization of nickel ferrite nanoparticles by sol-gel auto combustion method, J. Chem. Pharm. Sci., 9, 160-162 (2016).
22 I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154, 337-346 (2008).   DOI
23 M. T. Sulak, E. Demirbas, and M. Kobya, Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran, Bioresour. Technol., 98, 2590-2598 (2007).   DOI
24 B. Samiey and A. Toosi, Kinetics and thermodynamics adsorption of congo red on cellulose, Cent. Eur. J. Chem., 8, 906-912 (2010).   DOI
25 H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53, 655-665 (2003).   DOI
26 S. Chegrouche, A. Mellah, and M. Barkat, Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies, Desalination, 235, 306-318 (2009).   DOI