DOI QR코드

DOI QR Code

Size Control of Iron Oxide (Fe3O4) Nanoclusters according to Reaction Factors and Consequent Change in Their Magnetic Attraction

반응 인자 제어에 의한 산화철(Fe3O4) 나노클러스터의 크기와 자기 특성 조절

  • Sanghoon Lee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Arim Byun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jin-sil Choi (Department of Chemical and Biological Engineering, Hanbat National University)
  • 이상훈 (한밭대학교 화학생명공학과) ;
  • 변아림 (한밭대학교 화학생명공학과) ;
  • 최진실 (한밭대학교 화학생명공학과)
  • Received : 2023.07.15
  • Accepted : 2023.08.12
  • Published : 2023.08.28

Abstract

Iron oxide (Fe2O3) nanoclusters exhibit significant potential in the biomedical and pharmaceutical fields due to their strong magnetic properties, stability in solutions, and compatibility with living systems. They excel in magnetic separation processes, displaying high responsiveness to external magnetic fields. In contrast to conventional Fe2O3 nanoparticles that can aggregate in aqueous solutions due to their ferrimagnetic properties, these nanoclusters, composed of multiple nanoparticles, maintain their magnetic traits even when scaled to hundreds of nanometers. In this study, we develop a simple method using solvothermal synthesis to precisely control the size of nanoclusters. By adjusting precursor materials and reducing agents, we successfully control the particle sizes within the range of 90 to 420 nm. Our study not only enhances the understanding of nanocluster creation but also offers ways to improve their properties for applications such as magnetic separation. This is supported by our experimental results highlighting their size-dependent magnetic response in water. This study has the potential to advance both the knowledge and practical utilization of Fe2O3 nanoclusters in various applications.

Keywords

Acknowledgement

본 연구는 한국 연구재단 중견연구사업(2023R1A2C100509111)의 지원으로 수행되었습니다.

References

  1. N. Lee: News & Information for Chemical Engineers, 33 (2015) 484.
  2. H. Deng, H. Li, Q. Peng, X. Wang, J. Chen and Y. Li: Angew. Chem. Int. Ed., 44 (2005) 2782.
  3. E. Amstad, M. Textor and E. Reimhult: Nanoscale, 3 (2011) 2819.
  4. M. K. Yu, Y. Y. Jeong, J. Park, S. Park, J. W. Kim, J. J. Min, K. Kim and S. Jon: Angew. Chem. Int. Ed., 47 (2008) 5362.
  5. S. M. K. Ansari, E. Ficiar, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot and F. D. Agata: Materials., 12 (2019) 465.
  6. H. Fatima and K. S. Kim: Korean J. Chem. Eng., 34 (2017) 589.
  7. L. Abarca-Cabrera, P. Fraga-Garcia and S. Berensmeier: Biomater. Res., 25 (2021) 1.
  8. S. Lee, M. Jeong, S. Lee, S. H. Lee and J. Choi: Nanoscale Adv., 4 (2022) 792.
  9. A. J. Antone, Z. Sun and Y. Bao: Magnetochemistry., 5 (2019) 45. 
  10. J. Kim, V. T. Tran, S. Oh, C. S. Kim, J. C. Hong, S. Kim, Y. S. Joo, S. Mun, M. H. Kim, J. W. Jung, J. Lee, Y. S. Kang, J. W. Koo and J. Lee: ACS Appl. Mater. Interfaces., 10 (2018) 41935. 
  11. J. Liang, H. Ma, W. Luo and S. Wang: Mater. Chem. Phys., 139 (2013) 383. 
  12. S. Xuan, Y. X. J. Wang, J. C. Yu and K. C. Leung: Chem. Mater., 21 (2009) 5079. 
  13. J. Ge, Y. Hu, M. Biasini, W. P. Beyermann and Y. Yin: Angew. Chem. Int. Ed., 46 (2007) 4342. 
  14. X. Wei, L. Jing, C. Liu, Y. Hou, M. Jiao and M. Gao: CrystEngComm., 20 (2018) 2421. 
  15. S. Li, T. Zhang, R. Tang, H. Qiu, C. Wang and Z. Zhou: J. Magn. Magn. Mater., 379 (2015) 226. 
  16. C. L. Lin, C. F. Lee and W. Y. Chiu: J. Colloid Interface Sci., 291 (2005) 411. 
  17. S. I. U. Madrid, U. Pal and F. S. D. Jesus: Adv. Nano Res., 2 (2014) 187. 
  18. E. Tombacz, R. Turcu, V. Socoliuc and L. Vekas: Biochem. Biophys. Res. Comm., 468 (2015) 442. 
  19. A. Kostopoulou and A. Lappas: Nanotechnol. Rev., 4 (2015) 595. 
  20. Z. Li, T. Zhang and K. Li: Dalton Trans., 40 (2011) 2062. 
  21. H. F. Chappell, W. Thom, D. T. Bowron, N. Faria, P. J. Hasnip and J. J. Powell: Phys. Rev. Mater., 1 (2017) 036002. 
  22. H. Tuysuz, E. L. Salabas, C. Weidenthaler and F. Schuth: J. Am. Chem. Soc., 130 (2008) 280. 
  23. N. Pariona, A. I. Martinez, H. M. Hdz-Garcia, L. A. Cruz and A. Hernandez-Valdes: Saudi J. Biol. Sci., 24 (2017) 1547. 
  24. J. M. Bigham and D. K. Nordstrom: Rev. Mineral. Geochem., 40 (2000) 351. 
  25. V. A. Drits, B. A. Sakharov, A. L. Salyn and A. Manceau: Clay Miner., 28 (1993) 185. 
  26. C. L. Snow, K. I. Lilova, A. V. Radha, Q. Shi, S. Smith, A. Navrotsky, J. Boerio-Goates and B. F. Woodfield: J. Chem. Therm., 58 (2013) 307. 
  27. S. P. Schwaminger, R. Surya, S. Filser, A. Wimmer, F. Weigl, P. Fraga-Garcia and S. Berensmeier: Sci. Rep., 7 (2017) 12609. 
  28. M. Lin, H. R. Tan, J. P. Y. Tan and S. Bai: J. Phys. Chem. C, 117 (2013) 11242.  https://doi.org/10.1021/jp402281a
  29. M. Aeppli, R. Kaegi, R. Kretzschmar, A. Voegelin, T. B. Hofstetter and M. Sander: Environ. Sci. Technol., 53 (2019) 3568. 
  30. H. You and J. Fang: Nano Today., 11 (2016) 145. 
  31. F. Wang, V. N. Richards, S. P. Shields and W. E. Buhro: Chem. Mater., 26 (2014) 5. 
  32. H. H. Dehsari, A. H. Ribeiro, B. Ersoz, W. Tremel, G. Jakob and K. Asadi: CrystEngComm., 19 (2017) 6694.  https://doi.org/10.1039/C7CE01406F
  33. M.Z hang, K. Chen, X. Chen, X. Peng, X. Sun and D Xue: CrystEngComm, 17 (2015) 1917. 
  34. R. Yu and Y. J. Kim: Ceramist, 22 (2019) 256.  https://doi.org/10.31613/ceramist.2019.22.3.04
  35. J. Lim, S. P. Yeap, C. H. Leow, P. Y. Toh and S. C. Low: J. Colloid Interface Sci., 421 (2014) 170 
  36. J. K. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D.Tilton and S. A. Majetich: Acs Nano, 5 (2011) 217.