• Title/Summary/Keyword: Solution film thickness

Search Result 376, Processing Time 0.033 seconds

On Application of Optimization Scheme To Direct Numerical Analysis Of Slider

  • Hwang, Pyung;Khan, Polina;Pan, Galina
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.23-27
    • /
    • 2004
  • The object of the present work is the numerical analysis of the computer hard disk slider. The pressure between slider and disk surfaces is calculated using the Boundary Fitted Coordinate System and Divergence Formulation for the nonlinear Reynolds' equation solution. The optimization scheme is applied to search for the steady state position of the slider. The simplified method is given for the case of the fixed inclined pad. The film thickness ratios and pitching and rolling angles are considered as alternative choice of the slider's coordinates. The behavior of the objective function for the Negative Pressure slider is studied in details. Methods of conjugate directions and feasible directions are applied.

Analysis of Line and Circular Contact Elastohydrodynamic Lubrication with Multigrid Multilevel Method (다중 격자 다중 차원법을 이용한 선접촉 또는 점접촉 탄성 유체 윤활 해석)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.323-330
    • /
    • 1999
  • The conventional analysis for the numerical computation of fluid film thickness with elastic deformation of contact region. is performed by Newton-Rephson method for its 18st convergence characteristics. However, both high load and relatively low sliding velocity frequently make it impossible for Newton-Rahpson method to get both converged and stable solutions. In particular, this method cannot provide converged Solution under the condition of high load above 1.0 GPa which frequently occurs in line contact of EHL problem. Multigird multi-level method for the solver of non-linear partial differential equation including solid deformation is preferred to Newton-Rshpson method for better convergence and stability and is applied to line contact EHL behavior in this study.

  • PDF

Fractal Analysis of the Surface in Thin Film Capacitors

  • Hong, Kyung-Jin;Min, Yong-Ki;Cho, Jae-Cheol
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.18-22
    • /
    • 2001
  • The thin films of high permitivity in ferroelectric materials using a capacitor are applied to DRAMs and FRAMs. (Ba, Sr)TiO$_3$ thin as ferroelectric materials were prepared by the sol-gel method and made by spin-coating on the Pt/Sio$_2$/Si substrate at 4,000 [rpm] for 10 seconds. The structural characteristics of the surface were analyzed by fractal dimension. The thickness of BST ceramics thin films was about 260∼280 [nm]. The property of the leakage current was stable with 10-9∼10-11[A] when the applied voltage was 0∼3[V]. BST thin films ha low leakage current properties when fractal dimension was low and a coating area was high.

Analysis on Optical Characteristics of LCD Backlight LGP (LCD 백라이트 도광판의 광학 특성에 대한 연구)

  • Sah, Jong-Youb;Park, Jong-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.362-369
    • /
    • 2004
  • LGP(Light-Guide Panel) of LCD backlight is one of the major componets which affect on the product quality of LCD. The optical relation between brightness and pattern has been investigated for LGP with the uniform distribution of brightness. When given the brightness distribution as target, the solutions of pattern distribution is not unique. Each solution of pattern designs shows the different brightness intensity even though they have the same brightness distribution with target's one. The manufacturing condition of pattern has an influence on the possibly-maximum-brightness intensity among the solutions of pattern design. The present study has examined the effects of LGP thickness, pattern shape errors, and reflection film on the optical characteristics of LGP.

Development of apparatus for Single-sided Wet Etching and its applications in Corrugated Membrane Fabrication

  • Kim, Junsoo;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-14
    • /
    • 2021
  • Wet etching is more economical than dry etching and provides a uniform etching depth regardless of wafer sizes. Typically, potassium hydroxide (KOH) and tetra-methyl-ammonium hydroxide (TMAH) solutions are widely used for the wet etching of silicon. However, there is a limit to the wet etching process when a material deposited on an unetched surface reacts with an etching solution. To solve this problem, in this study, an apparatus was designed and manufactured to physically block the inflow of etchants on the surface using a rubber O-ring. The proposed apparatus includes a heater and a temperature controller to maintain a constant temperature during etching, and the hydrostatic pressure of the etchant is considered for the thin film structure. A corrugation membrane with a diameter of 800 ㎛, thickness of 600 nm, and corrugation depth of 3 ㎛ with two corrugations was successfully fabricated using the prepared device.

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film (InGaP/GaAs 이중접합 기반의 고효율 플렉시블 태양전지 제조기술 연구)

  • Moon, Seungpil;Kim, Youngjo;Kim, Kangho;Kim, Chang Zoo;Jung, Sang Hyun;Shin, Hyun-Beom;Park, Kyung Ho;Park, Won-Kyu;Ahn, Yeon-Shik;Kang, Ho Kwan
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2016
  • III-V compound semiconductor based thin film solar cells promise relatively higher power conversion efficiencies and better device reliability. In general, the thin film III-V solar cells are fabricated by an epitaxial lift-off process, which requires an $Al_xGa_{1-x}As$ ($x{\geq}0.8$) sacrificial layer and an inverted solar cell structure. However, the device performance of the inversely grown solar cell could be degraded due to the different internal diffusion conditions. In this study, InGaP/GaAs double-junction solar cells are inversely grown by MOCVD on GaAs (100) substrates. The thickness of the GaAs base layer is reduced to minimize the thermal budget during the growth. A wide band gap p-AlGaAs/n-InGaP tunnel junction structure is employed to connect the two subcells with minimal electrical loss. The solar cell structures are transferred on to thin metal films formed by Au electroplating. An AlAs layer with a thickness of 20 nm is used as a sacrificial layer, which is removed by a HF:Acetone (1:1) solution during the epitaxial lift-off process. As a result, the flexible InGaP/GaAs solar cell was fabricated successfully with an efficiency of 27.79% under AM1.5G illumination. The efficiency was kept at almost the same value after bending tests of 1,000 cycles with a radius of curvature of 10 mm.

The Study of Water Resistance and Water/Oxygen Barrier Properties of Poly(vinyl alcohol)/Water-soluble Poly(ethylene-co-acrylic acid) Blend Films (폴리비닐알콜/수분산 에틸렌-아크릴산 공중합체 블렌딩 필름의 내수성 및 수분/산소 차단성 연구)

  • Kim, Eun Ji;Park, Jae Hyung;Paik, In Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.217-221
    • /
    • 2012
  • Blending films having enhanced water-resistance and barrier properties were prepared using the mixtures of poly(vinyl alcohol) (PVA) aqueous solution and poly(ethylene-co-acrylic acid) (EAA) dispersed in water. Thermal-mechanical properties, contact angles, water-vapor transmission rates (WVTR) and oxygen transmission rates $(O_2TR)$ were measured with the content of EAA of blending films, and their water-resistance was evaluated. The tensile strength of the films was found to be $9.16{\sim}11.75\;kg/mm^2$ which showed no significant difference compared with that of PVA, and the hardness increased with the content of EAA. The glass transition temperature and melting temperature of the blending films were slightly improved. The film prepared with PVA/EAA (= 90/10), of which the swelling and solubility were measured to be 109 and 0%, respectively, showed improved water-resistance. The WVTR and $O_2TR$ for the PET film (thickness $50\;{\mu}m$) coated with PVA/EAA (= 90/10) film (thickness $2.5\;{\mu}m$) were measured to be $9.1\;g/m^2/day$ and $2.0\;cc/m^2/day$, respectively.

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Properties of Organic-Inorganic Protective Films on Flexible Plastic Substrates by Spray Coating Method (연성 플라스틱 기판위에 스프레이 코팅방법으로 제조한 유·무기 보호막의 특성)

  • Lee, Sang Hee;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.79-84
    • /
    • 2017
  • The solar cells should be protected from the moisture and oxygen in order to sustain the properties and reliability of the devices. In this research, we prepared the protection films on the flexible plastic substrates by spray coating method using organic-inorganic hybrid solutions. The protection characteristics were studied depending on the various process conditions (nozzle distance, thicknesses of the coatings, film structures). The organic-inorganic solutions for the protection film layer were synthesized by addition of $Al_2O_3$ ($P.S+Al_2O_3$) and $SiO_2$ ($P.S+SiO_2$) nano-powders into PVA (polyvinyl alcohol) and SA (sodium alginate) (P.S) organic solution. The optical transmittances of the protection film with the thicknesses of $5{\mu}m$ showed 91%. The optical transmittance decreased from 81.6% to 73.6% with the film thickness increased from $78{\mu}m$ to $178{\mu}m$. In addition, the protective films were prepared on the PEN (polyethylene naphthalate), PC (polycarbonate) single plastic substrates as well as the Acrylate film coated on PC substrate (Acrylate film/PC double layer), and $Al_2O_3$ film coated on PEN substrate ($Al_2O_3$ film/PEN double layer) using the $P.S+Al_2O_3$ organic-inorganic hybrid solutions. The optimum protection film structure was studied by means of the measurements of water vapor transmittance rate (WVTR) and surface morphology. The protective film on PEN/$Al_2O_3$ double layer substrate showed the best water protective property, indicating the WVTR value of $0.004gm/m^2-day$.