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Abstract: The object of the present work is the numerical analysis of the computer hard disk slider. The pressure between slider
and disk surfaces is calculated using the Boundary Fitted Coordinate System and Divergence Formulation for the nonlinear
Reynolds’ equation solution. The optimization scheme is applied to search for the steady state position of the slider. The
simplified method is given for the case of the fixed inclined pad. The film thickness ratios and pitching and rolling angles are
considered as alternative choice of the slider’s coordinates. The behavior of the objective function for the Negative Pressure
slider is studied in details. Methods of conjugate directions and feasible directions are applied.
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Introduction

The main computer data storage, such as the hard disk drive
has several heads (sliders) and disks. The heads are used to
read and write the magnetic records on the disk. The shape of
the slider surface and the slider’s position provide generation
of high pressure in the air film between the rotating disk and
the slider. Further increase of the hard disk capacity is desired
in modern computer applications. The increasing of the data
storage density defines requirements to new slider design. The
slider’s size and shape must provide ultra low flying height
(about several nanometers) in steady state position, low
sensitivity to alteration of external pressure, disk surface
velocity, skew angle and external excitations.

Slhders, which have cavities where the subambient pressure
is generated, are called Negative Pressure Slider. The suction
force pulls such a slider close to the disk surface [1]. Other
«dvantages of the NPS are high stiffness, fast take-off and low
sensitivity to external pressure. More complicated shapes of
INPS are required to satisfy other conditions, such as constant
flying height for different skew angles between disk velocity
end slider axes [2]. Zeng and Bogy [3] have developed the
design of a slider with high damping, which suppresses
unwanted vertical head oscillations.

The solution of the nonlinear Reynolds’ equation, which
describes the pressure distribution in the air film, is essential
part of the numerical analysis of the slider. This time-
consuming procedure must be done many times to determine
the steady state position of the slider and it’s dynamic behavior.
Fukui and Kaneko [4] prepared the database that can be used
to decrease the time of the pressure calculation.
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The Reynolds equation can be solved using different
discretization methods, such as Finite Difference Method,
Finite Element Method [5] or Divergence Formulation [6],
which is also called Direct Numerical Method. FEM has some
advantages for example a wide choice of possible mesh
elements. Wu and Bogy [7] developed the method of the
triangular mesh adaptation that improves the pressure
calculation. The DF enables modeling of the step-like slider
surface. Kawabata [6] applied the Boundary Fitted Coordinate
System to DF method to deal with complicated slider shapes.

Many researchers investigated static behavior of sliders,
described by its’ load carrying capacity, flying height and pitch
angle [1,8]. Also significant improvement of the sliders flying
characteristics was achieved by using dynamic analysis, which
means evaluation of air bearing stiffness and damping
coefficient in slider position near the steady state [2,3,9]. But
hitherto no special attention was drawn to improvement of the
steady state search methods. In the present work the
optimization scheme is applied to the slider’s steady state
position search in order to decrease the required number of the
pressure calculations.

General problem statement

The distribution of pressure in the air film between the slider
and the disk is described by the nonlinear Reynolds equation,
dimensionless form of which is

0 (,3,9P 20 (,3,0PY _ , 0 d
a—X(H Pa—X)+OL a—Y(H Pﬁ) = AXaX(HP)+AYaY(HP)

(D

where H(X,Y) is dimensionless air film thickness, P(X,Y) is
dimensionless pressure, A, and A, are compressibility numbers
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Fig. 1. The position of the slider (%, = minimal film thickness,
W = slider weight, ¢ = pitch angle, 8 = roll angle).
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And o is slider length to width ratio
oa=10/b 3)

Term with time derivative of H, which expresses the air film
damping, is absent in Eq. (1), because the static problem is
considered.

The position of slider above the disk is shown on the Fig. I.
When the minimal film thickness 4, is chosen as a unit of
height, then the distribution of the dimensionless film thickness
can be written as

h
H(X,Y):h—x+1+ )—h@+9:—l 3)
0 0 0

where hdX,Y) is determined by the slider surface shape.

So, for the given shape of slider the pressure distribution
p(x,y) depends on slider position (4, ¢ , 6).

The load carrying capacity is defined as follows:

L = ”p(x,y)dxdy )

It produce the rotational moments about the slider pivoting
point (xp, yp)

My = [JpCey)(e—x,)dxdy
s)
Mg = ”p(x,y)(y—y,,)dxdy

The weight of slider W acts through the slider’s mass center

x> Yo
So the total force in vertical direction

F=L-W ®)
And total moments about the pivoting point are

My, =M+ W(xc—xp)

7
The condition of the steady state is
F=0

To represent the steady state position search as an
optimization problem, the total objective function is defined as

f = flhy, 6,0) = (Lfojz + (%’0)2 + (3—;)2 ©)

where Ly = W, My, =0.1Wb and My, = 0.1WI are units of force
and moments. The minimum of such function f is equal zero
and corresponds to steady state search, the level f=0.1
corresponds to the steady state search accuracy 10%, the level
f=1 corresponds to 100% accuracy and so on.

The alternative sliders coordinate set is (h, kx, ky),
where

L = hy—hy _ ¢b
YT ohy kg
hy—hy _ 61

b = ho =ho

(10)

express the film thickness ratio in x and y directions. The
coordinate set (/1, ,, k,) has advantage over the coordinate set
(hg, 9, 0), because the dimensionless film thickness depends on
minimal film thickness only where A # 0.

h
HX,Y) = 254 14 kX +kyY (11)
0

From other points of view these two coordinate sets are
equivalent, so choose the second one.
Thus the problem is

Minimize flh, k,, k)
hy>0

subject to k, > 0 (12)
k,>0

The Alternative Problem Statement for the
Approximation of the Flat Slider and
Thick Air Film

For the flat slider, such as 4,(X,Y) = 0, calculations of F, M, and
M, have shown, that they are monotonic functions of A, k, and
k, (Fig. 2).

This result is with good agreement with analytical solution
for fixed-incline slider bearing [10].

In this case the objective function f defined by Eq. (9) has
only one local minimum, corresponding to global minimum,
where f=0. So the steady state position can be found, using
any local optimization technique, considering constraints given
by (12) and starting from any initial position.

For thick air film, corresponding to compressibility numbers
A= 1, Ay= 1, Eq. (1) can be approximated to linear form [10]

d (,30P 20 (,30P\ _ , oH JoH
ﬁ(H ﬁ)+0€ a_Y(H 5;,) = Aan+AY8Y (13)
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Fig. 2. The load carrying capacity and moments of the flat
slider (a) versus minimal film thickness %, (b) versus film
thickness ration in x-direction kx and (c¢) versus film thickness
ration in y-direction &,

For the flat slider H(X,Y) does not depend on /4, Hence Eq.
(13) has the solution in form

PX, Y) = Ay(hg) - (X, ¥) (14)

where A(X,Y) is defined by (2) and g(X,Y} does not depend on
%o, but on k, and k, only. Then air film load carrying capacity
and load moments also can be written as

L = Ag(hy) - g,(ky k)
Uy = Aglhy) - 850k k) (15)
My = Ax(hy) - g5k, &)

The coordinates of the air film pressure center

X, = My/L = g,/8,
(14)
i = M/l = gy/g,

in the case of mass center and pivot point coincidence can be
used for alternative formulation of the steady state search
problem.

Minimize G(ky, ky) = (x, —xp) + (v, —yp)°

Subject to k., >0 (15)
k,>0

And after this for given £, and £,

Find zero of F ()

Subject to A, > 0 (16)

For the same optimization methods the summarized
difficulty of the problems (15) and (16) is less than the one of
the problem (12). So for the slider with an almost flat surface,
flying on a thick air film this approach is useful.

General problem solution

As was mentioned above the main requirement to the modern
shder design is the ultra fow flying height. It means that
usually the approximation of the thick air film cannot be
applied and the compressibility number is very big, more than
1600.

The surface of the most of sliders is not flat, 1t has some
steps and cavities, designed to change pressure distribution so,
that the flying characteristics of the slider will be improved.

Because of these reasons it is impossible to split the general
three-dimensional problem (12) into a sequence of
optimization problems with a lower dimension that would be
universal for all practical types of sliders. So the general
problem solution requires minimization of the total objective
function f, such as defined by Eq. (9) in three dimensional
space of slider’s position coordinates (h,, ¢, 8) or (i, k., k).

Then for the search of the steady state position of slider
based on the NPS it is important to use the moments M, M,
not the load center coordinates x,, v,. At some slider location
the load carrying capacity of the NPS can vanish, and the load
center coordinates, as a function of the slider position, will
have discontinuity.

Several models of the NPS were considered in order to
determine the general behavior of the objective function. One
of the results is given on the Fig. 3. The main conclusion of
this investigation: the objective function can have several local
minima, but the global minimum coincides with the steady
state position.

Hence there are two possible ways to solve this problem.
The first one is to choose some global optimization scheme,
such as the Genetic Algorithm of the Simulated Annealing.
The second one is to use some local optimization scheme with
very strict constraints, so that in this slider position range there
is the only one local minimum, which corresponds to the
steady state position. The first way seems to provide better
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Fig. 3. The example of objective function in a wide range of
minimal film thickness for NPS.

automation of the steady state search, since the second one
requires manual search of the appropriate slider position range.

But actually the second one is more preferable, due to next
reasons. First, the estimation of the steady state position is
quite easy, when several similar sliders are analyzed
consequently. Second, the convergence of the pressure
calculation tends to be poor for conditions, significantly
different from the steady state.

The feasible directions method of constrained optimization
[11] is chosen to unclose the search trajectory in a given range
of hy, k. and k,

The considered objective function behaves as the quadratic
function in vicinity of the minimum. So the methods, based on
use of the conjugate directions might be a good choice.

vatives 9L 9F 9f .
The derivatives 3hy ky ok, can be calculated as follows:
A _AF O A Of A an

where Af is calculated from Ap(x,y) - the small disturbance of
pressure distribution corresponding to small disturbance of the
air film AH(X)Y). The equation on Ap(x,y) is the linearized
form of Eq.(1). The linearity provides fast calculation of
Ap(x,y) in comparison to calculation of p(x,y). So the conjugate
direction optimization using derivatives will be the reasonable
choice.

Conclusions

The optimization problem statement, equivalent to the steady
state search problem is presented.

The fast solution is derived for sliders, which can be
approximated as flat thick film sliders.

For more advanced designs of sliders, based on the NPS, the
necessity of multidimensional search in three dimensions is
proved.

It was found that in the general case the local minimum of
the objective function is not unique, but from the practical
point of view it is better to use local minimization subject to
restricted constraints.

The combination of the feasible directions method with the

conjugate direction method with using derivatives is found to
be the best choice for this problem.

Nomenclature
b = the slider’s length
F =the total force, applied to slider in vertical
direction
f = the objective function
G = the alternative objective function
H = dimensionless air film thickness; h/h0
h = the air film thickness
hy = minimal film thickness, the flying height
hg =the slider’s shape function, the difference in
position of the real slider surface and the flat surface
k,, k, = the air film thickness ratio; (h,—h,)/h, and (h,—hy)/
ho
L = the air film load carrying capacity
l = the slider’s width
M, M, =the total moments in pitch and roll directions
about the slider’s mass center
My, M, =the moments of the air film force
P = dimensionless pressure; p/p,
p = the air film pressure
Do = external pressure
uv = the disk surface velocity in x and y direction
XY = dimensionless coordinates; x/b and y/I
Xy Ve = coordinates of the slider’s mass center
X, Vi = coordinates of the pressure center
Xy Vo = coordinates of the pivoting point
o = the length to width ratio; b/]
A = the small disturbance of some quantity
Ay A, = the compressibility numbers;
2
6 (g nb and 6 \;n b
hopo hopo!
¢ = the slider’s pitch angle
0 = the slider’s rolling angle
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