DOI QR코드

DOI QR Code

Properties of Organic-Inorganic Protective Films on Flexible Plastic Substrates by Spray Coating Method

연성 플라스틱 기판위에 스프레이 코팅방법으로 제조한 유·무기 보호막의 특성

  • Lee, Sang Hee (Department of Electronics and Electrical Engineering, Dankook University) ;
  • Chang, Ho Jung (Department of Electronics and Electrical Engineering, Dankook University)
  • 이상희 (단국대학교 전자전기공학과) ;
  • 장호정 (단국대학교 전자전기공학과)
  • Received : 2017.12.18
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

The solar cells should be protected from the moisture and oxygen in order to sustain the properties and reliability of the devices. In this research, we prepared the protection films on the flexible plastic substrates by spray coating method using organic-inorganic hybrid solutions. The protection characteristics were studied depending on the various process conditions (nozzle distance, thicknesses of the coatings, film structures). The organic-inorganic solutions for the protection film layer were synthesized by addition of $Al_2O_3$ ($P.S+Al_2O_3$) and $SiO_2$ ($P.S+SiO_2$) nano-powders into PVA (polyvinyl alcohol) and SA (sodium alginate) (P.S) organic solution. The optical transmittances of the protection film with the thicknesses of $5{\mu}m$ showed 91%. The optical transmittance decreased from 81.6% to 73.6% with the film thickness increased from $78{\mu}m$ to $178{\mu}m$. In addition, the protective films were prepared on the PEN (polyethylene naphthalate), PC (polycarbonate) single plastic substrates as well as the Acrylate film coated on PC substrate (Acrylate film/PC double layer), and $Al_2O_3$ film coated on PEN substrate ($Al_2O_3$ film/PEN double layer) using the $P.S+Al_2O_3$ organic-inorganic hybrid solutions. The optimum protection film structure was studied by means of the measurements of water vapor transmittance rate (WVTR) and surface morphology. The protective film on PEN/$Al_2O_3$ double layer substrate showed the best water protective property, indicating the WVTR value of $0.004gm/m^2-day$.

태양전지와 같은 광전소자의 특성 및 신뢰성 유지하기 위해서는 수분과 산소 등으로 부터 소자 내부가 보호되어야 한다. 본 연구는 여러 연성(flexible) 플라스틱 기판위에 유 무기 복합 보호막을 스프레이코팅 방법으로 형성하여 공정조건(노즐 위치, 박막 두께, 기판 구성)에 따른 소자의 보호특성을 연구하였다. 사용된 복합 보호막 재료로서 PVA (polyvinyl alcohol)와 SA(sodium alginate) 혼합 유기 물질(P.S)에 $Al_2O_3$($P.S+Al_2O_3$)과 $SiO_2$($P.S+SiO_2$) 나노 분말을 혼합하여 유 무기 복합 보호막 용액을 합성하였다. 플라스틱 기판 위에 코팅한 보호막의 두께가 $5{\mu}m$에서 91%의 투과율을 나타내었으며 $78{\mu}m$에서 $178{\mu}m$로 두께가 증가할 경우 광 투과율은 81.6%에서 73.6%으로 감소하였다. 또한 합성한 $P.S+Al_2O_3$ 복합재료를 사용하여 PEN(polyethylene naphthalate), PC(polycarbonate) 단일 플라스틱 기판과 Acrylate film과 PC 이중막(Acrylate film/PC double layer) 구조와 $Al_2O_3$ 무기박막과 PEN 이중막($Al_2O_3$ film/PEN double layer) 구조의 기판 위에 $P.S+Al_2O_3$ 용액을 사용하여 수분투과도(water vapor transmission rate, WVTR)와 표면형상 등을 측정하여 최적의 보호막 구조를 확인하였다. 즉, $Al_2O_3$ film/PEN 이중막 기판위에 형성한 보호막의 수분투과 값은 $0.004gm/m^2-day$로 가장 우수한 내 투습 특성을 나타내었다.

Keywords

References

  1. K. H. Kim, and J. H. Yun, "Research Trends and Mid-&Long-term Development Directions of Cu(In,Ga)Se2 Solar Cells", Korean Industrial Chemistry News, 20(2), 1 (2017).
  2. J. H. Yoo, and H. J. Chang, "Preparation of Polymer Light Emitting Diodes with PFO-poss Organic Emission Layer on ITO/Glass Substrates", J. Microelectron. Packag. Soc., 13(4), 51 (2006).
  3. B. M. Park, and H. J. Chang, "Preparation of Characterization of White Phosphorescence Polymer Light Emitting Diodes Using PFO:Ir(ppy)3:MDMO-PPV Emission Layer", J. Microelectron. Packag. Soc., 18(4), 79 (2011).
  4. J. S. Lewi, and M. S. Weaver, "Thin-Film Permeation Barrier Technology for Flexible Organic Light-Emitting Devices", IEEE Journal of Selected Topics in Quantum Electronics, 10(1), 45 (2004). https://doi.org/10.1109/JSTQE.2004.824072
  5. M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler, "Low-Voltage, Low-Power, Organic Light Emitting Transistors for Active matrix Displays", Science, 332, 570 (2011). https://doi.org/10.1126/science.1203052
  6. S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack. D. Han, M. S. Song, S. Kim, S. Mohammadi, I. S. Kee, and S. Y. Lee, "Low-Power Flexible Organic Light-Emitting Diode Display Device", Adv. Mater., 23, 3511 (2011). https://doi.org/10.1002/adma.201101066
  7. Y. W. Park, H. J. Choi, J. H. Choi, T. H. Park, J. W. Jeong, E. H. Song, and B. K. Ju, "Enhanced Power Efficiency of Organic Light-Emitting Diodes using Pentacene on CF4-Plasma-Treated Indium Tin Oxide Anodes", IEEE. Electr. Device. L., 33, 1156 (2012). https://doi.org/10.1109/LED.2012.2199461
  8. G. H. Kim, J. Oh, Y. S. Yang, M. Do, and K. S. Suh, "Encapsulation of organic light-emitting devices by mean of photo polymerized polyacrylate films", Polymer, 45, 1879 (2004). https://doi.org/10.1016/j.polymer.2004.01.038
  9. J. Jin, J. J. Lee, B. S. Bae, S. J. Park, S. Yoo, and K. H. Jung, "Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation", Org. Electron., 13, 53 (2012). https://doi.org/10.1016/j.orgel.2011.09.008
  10. K. S. Kim, G. H. Kang, and G. J. Yu, "Analysis of Optical Characteristics of Transparent Glasses for PV and Glass-Glass Module Application", Journal of the Korean Solar Energy Society, 28(5), 8 (2008).
  11. K. H. Shin, T. Y. Kwak, and S. H. Rhim, "Laminator Manufacturing and Process Optimization for Solar Cell Module Manufacturing", Journal of Mechanical Science and Technology, 157 (2011).
  12. S. C. Mun, S. H. Lee, B. M. Park, J. H. Pyee, and H. J. Chang, "Effects of Passivation Thin Films on the Optical Properties of the Green Organic Light Emitting Diodes", J. Microelectron. Packag. Soc., 23(1), 11 (2016) https://doi.org/10.6117/KMEPS.2016.23.1.011
  13. S. H. Lee, B. M. Park, Y. G. Jo, J. H. Pyee, and H. J. Chang, "Effects of Organic Passivation Films on Properties of Polymer Solar Cells with P3HT:PC61BM Active Layers", J. Microelectron. Packag. Soc., 21(4), 105 (2014). https://doi.org/10.6117/kmeps.2014.21.4.105
  14. S. H. Lee, B. M. Park, K. H. Kim, Y. C. Chang, J. H. Pyee, and H. J. Chang, "Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells", J. Microelectron. Packag. Soc., 23(3), 1 (2016).
  15. A. I. Khan, and D. O'Hare, "Intercalation chemistry of layered double hydroxides: recent developments and applications", J. Mater. Chem., 12(11), 3191 (2002). https://doi.org/10.1039/B204076J
  16. H. Kopka, K. Beneke, and G. Lagaly, "Anionic surfactants between double metal hydroxide layers", J. Colloid Interface Sci., 123(2), 427 (1988). https://doi.org/10.1016/0021-9797(88)90263-9
  17. V. Laget, C. Hornick, P. Rabu, and M. Drillon, "Hybrid organic-inorganic layered compounds prepared by anion exchange reaction: correlation between structure and magnetic properties", J. Mater. Chem., 9(1), 169 (1999). https://doi.org/10.1039/a805870i

Cited by

  1. 유연 InGaP/GaAs 2중 접합 태양전지 모듈의 신뢰성 확보를 위한 실험 및 수치 해석 연구 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.075