• Title/Summary/Keyword: Solid-state electrolytes

Search Result 110, Processing Time 0.021 seconds

Linear and network structures of polymer electrolyte based on phosphate and polyether copolymers

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.232-235
    • /
    • 1998
  • ion conducting polymers have been extensively investigated because of their potential application as an electrolyte in solid state batteries [1]. Among the polymer electrolytes, solid polymer electrolytes (SPEs) composed of ion conducting polymer and alkali metal salt have many advantages such as high ionic conductivity, high energy density and light weight. This made them suitable replacement for liquid electrolytes. (omitted)

  • PDF

Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte

  • Lee, Jongkwan;Heo, Kookjin;Song, Young-Woong;Hwang, Dahee;Kim, Min-Young;Jeong, Hyejeong;Shin, Dong-Chan;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 2022
  • Lithium-sulfur batteries (LSBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) owing to their high energy density and economic viability. In addition, all-solid-state LSBs, which use solid-state electrolytes, have been proposed to overcome the polysulfide shuttle effect while improving safety. However, the high interfacial resistance and poor ionic conductivity exhibited by the electrode and solid-state electrolytes, respectively, are significant challenges in the development of these LSBs. Herein, we apply a poly (ethylene oxide) (PEO)-based composite solid-state electrolyte with oxide Li7La3Zr2O12 (LLZO) solid-state electrolyte in an all-solid-state LSB to overcome these challenges. We use an electrochemical method to evaluate the degradation of the all-solid-state LSB in accordance with the carbon content and loading weight within the cathode. The all-solid-state LSB, with sulfur-carbon content in a ratio of 3:3, exhibited a high initial discharge capacity (1386 mAh g-1), poor C-rate performance, and capacity retention of less than 50%. The all-solid-state LSB with a high loading weight exhibited a poor overall electrochemical performance. The factors influencing the electrochemical performance degradation were revealed through systematic analysis.

Polymer Electrolytes and their Application to Solar Cells and Separation Membranes (촉진수송 및 태양전지용 분리막)

  • 강용수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.13-35
    • /
    • 2004
  • Metal Complexes in Macromolecules Applications of Polymer Electrolyte Membranes Facilitated Transport in Solid State Roles of Electrolytes in Solar Cells - Electrolytes :ㆍI- and $I_3$-conductor ㆍelectron barrier or hole conductor ㆍelectrochemical redox reaction media ㆍinterfacial contactor for dye, $TiO_2$ and electrode ㆍmechanical separator (omitted)

  • PDF

New Polymer Electrolytes for Solid State Dye-Sensitized Solar Cells (고분자 전해질을 이용한 고체형 염료감응 태양전지)

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Chen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.231-234
    • /
    • 2007
  • The solid state dye-sensitized saolrc cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5% at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the effciency has also been investigated.

  • PDF

Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries (고체전해질과 양극의 계면 열화 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.334-342
    • /
    • 2024
  • The need for efficient and sustainable energy storage solutions has emerged due to a rapidly increasing energy demand and growing concerns about environmental issues. Among various energy storage methods, lithium secondary batteries are widely used in a variety of electronic devices such as smartphones, laptops, electric vehicles, and large-scale power storage systems due to their high energy density, long lifespan, and cost competitiveness. Recently, all-solid-state batteries (ASSBs) have attracted great attention because they can reduce the risk of fire associated with liquid electrolytes. Additionally, using high-capacity alternative anodes and cathodes in ASSBs can enhance energy density. However, ASSBs that use solid electrolytes experience a degradation in their electrochemical performances due to resistance at solid-solid interfaces. These interfaces can also result in poor physical contact and the presence of products formed from chemical and electrochemical reactions. Solving this interface problem is a critical issue for the commercialization of ASSBs. This review summarizes interfacial reactions between the cathode and solid electrolyte, along with research aimed at improving these interactions. Future development directions in this field are also discussed.

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Quasi-solid state electrolytes with silica nanomaterial for high efficiency dye-sensitized solar cells

  • Jeon, Semina;Lim, Jeongmin;Han, Chi-Hwan;Jun, Yongseok
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.85-88
    • /
    • 2013
  • Silica nanoparticles were synthesized with various silane coupling agents to make specific pathway of electrons and anti-recombination system when solidifying liquid electrolytes. In this study, we used an appropriate method of synthesis for activated silica nanoparticles and silane coupling agents with 3-(triethoxysilyl)propionitrile, Trimethoxy[3-(methylamino)propyl]silane, Triethoxyoctylsilane, and octadecyltrimethoxy silane. Dye-sensitized solar cells using solidified electrolytes with silica nanoparticles exhibit comparatively excellent efficiency, ranging from 2.3 to 7.0% under similar conditions.

Analysis of Characteristics of All Solid-State Batteries Using Linear Regression Models

  • Kyo-Chan Lee;Sang-Hyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.206-211
    • /
    • 2024
  • This study used a total of 205,565 datasets of 'voltage', 'current', '℃', and 'time(s)' to systematically analyze the properties and performance of solid electrolytes. As a method for characterizing solid electrolytes, a linear regression model, one of the machine learning models, is used to visualize the relationship between 'voltage' and 'current' and calculate the regression coefficient, mean squared error (MSE), and coefficient of determination (R^2). The regression coefficient between 'Voltage' and 'Current' in the results of the linear regression model is about 1.89, indicating that 'Voltage' has a positive effect on 'Current', and it is expected that the current will increase by about 1.89 times as the voltage increases. MSE found that the mean squared error between the model's predicted and actual values was about 0.3, with smaller values closer to the model's predictions to the actual values. The coefficient of determination (R^2) is about 0.25, which can be interpreted as explaining 25% of the data.