Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.3.87

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries  

Kim, Jumi (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI))
Oh, Jimin (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI))
Kim, Ju Young (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI))
Lee, Young-Gi (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI))
Kim, Kwang Man (Research Division of Reality Devices, Electronics and Telecommunications Research Institute (ETRI))
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.3, 2019 , pp. 87-103 More about this Journal
Abstract
Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.
Keywords
Lithium Battery; Solid Electrolytes; Composite Solid Electrolyte; Interfaces;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Quartarone and P. Mustarelli, 'Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives' Chem. Soc. Rev., 40, 2525-2540 (2011).   DOI
2 A. Varzi, R. Raccichini, S. Passerini, and B. Scrosati, 'Challenges and Prospects of the Role of Solid Electrolytes in the Revitalization of Lithium Metal Batteries' J. Mater. Chem. A, 4, 17251-17259 (2016).   DOI
3 M. Keller, A. Varzi, and S. Passerini, 'Hybrid Electrolytes for Lithium Metal Batteries' J. Power Sources, 392, 206-225 (2018).   DOI
4 H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, and J. Wang, 'Recent Progress and Perspective on Lithium Metal Anode Protection' Energy Storage Mater., 14, 199-221 (2018).   DOI
5 X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, and Q. Zhang, 'Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes' Chem, 5, 74-96 (2019).   DOI
6 M. Dirican, C. Yan, P. Zhu, and X. Zhang, 'Composite Solid Electrolytes for All-Solid-State Lithium Batteries' Mater. Sci. Eng. R, 136, 27-46 (2019).   DOI
7 S. Xia, X. Wu, Z. Zhang, Y. Cui, and W. Liu, 'Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries' Chem, 5, 753-785 (2019).   DOI
8 M. Shoji, E.J. Cheng, T. Kimura, and K. Kanamura, 'Recent Progress for All Solid State Battery Using Sulfide and Oxide Solid Electrolytes' J. Phys. D: Appl. Phys., 52, 103001 (2018).   DOI
9 A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, 'Liquid-Phase Synthesis of Sulfide Electrolytes for All-Solid-State Lithium Battery' Nature Rev. Chem., 3, 189-198 (2019).   DOI
10 J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, 'Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanism and Properties Governing Ion Conduction' Chem. Rev., 116, 140-162 (2016).   DOI
11 X. Chen and P.M. Vereecken, 'Solid and Solid-like Composite Electrolyte for Lithium Ion Batteries: Engineering the Ion Conductivity at Interfaces' Adv. Mater. Interf., 6, 1800899 (2019).   DOI
12 Y.S. Jung, D.Y. Oh, Y.J. Nam, and K.H. Park, 'Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Batteries Using Sulfide Solid Electrolytes' Israel J. Chem., 50, 472-485 (2015).
13 L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, and L. Mai, 'Interfaces in Solid-State Lithium Batteries' Joule, 2, 1991-2015 (2018).   DOI
14 Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, and G. Guan, 'Utmost Limits of Various Solid Electrolytes in All-Solid-State Lithium Batteries: A Critical Review' Renewable Sustain. Energy Rev., 109, 367-385 (2019).   DOI
15 M. Du, K. Liao, Q. Lu, and Z. Shao, 'Recent advances in the Interface Engineering of Solid-State Li-ion Batteries with Artificial Buffer Layers: Challenges, Materials, Construction, and Characterization' Energy Environ. Sci., 12, 1780-1804 (2019).   DOI
16 Y, Tateyama, B. Gao, R. Jalem, and J. Haruyama, 'Theoretical Picture of Positive Electrode-Solid Electrolyte Interface in All-Solid-State Battery from Electrochemistry and Semiconductor Physics Viewpoints' Curr. Op. Electrochem., 17, 149-157 (2019).   DOI
17 L. Liang, X. Sun, J. Zhang, J. Sun, L. Hou, Y. Liu, and C. Yuan, 'Sur-/Interfacial Regulation in All-Solid-State Rechargeable Li-ion Batteries Based on Inorganic Solid-State Electrolytes: Advances and Perspectives' Mater. Horizons, 6, 871-910 (2019).   DOI
18 Z. Jiang, Q. Han, S. Wang, and H. Wang, 'Reducing the Interfacial Resistance in All-Solid-State Lithium Batteries Based on Oxide Ceramic Electrolytes' ChemElectroChem, 6, 2970-2983 (2019).   DOI
19 Q. Wang, L. Jiang, Y. Yu, and J. Sun, 'Progress of Enhancing the Safety of Lithium Ion Battery from the Electrolyte Aspect' Nano Energy, 55, 93-114 (2019).   DOI
20 G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang, S. Chen, L. Xu, H. Yuan, and Q. Zhang, 'Fast Charging Lithium Batteries: Recent Progress and Future Prospects' Small, 15, 1805389 (2019).   DOI
21 H. Shen, E. Yi, L. Cheng, M. Amores, G. Chen, S.W. Sofie, and M.M. Doeff, 'Solid-State Electrolyte Considerations for Electric Vehicle Batteries' Sustainable Energy Fuels, 3, 1647-1659 (2019).   DOI
22 M. Zhu, J. Wu, Y. Wang, M. Song, S.H. Siyal, X. Yang, and G. Sui, 'Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries' J. Energy Chem., 37, 126-142 (2019).   DOI
23 Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, 'High Ionic Conductivity in Lithium Lanthanum Titanate' Solid State Commun., 86, 689-693 (1993).   DOI
24 F. Baskoro, H.Q. Wong, and H.-J. Yen, 'Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-ion Battery' ACS Energy Mater., 2, 3937-3971 (2019).   DOI
25 J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, and J.D. Robertson, 'Electrical Properties of Amorphous Lithium Electrolyte Thin Films' Solid State Ionics, 53-56, 647-654 (1992).   DOI
26 N.J. Dudney, J.B. Bates, R.A. Zuhr, C.F. Luck, and J.D. Robertson, 'Sputtering of Lithium Compounds for Preparation of Electrolyte Thin Films' Solid State Ionics, 53-56, 655-661 (1992).   DOI
27 J. Fu, 'Fast $Li^+$ Ion Conducting Glass-Ceramics in the System $Li_2O-Al_2O_3-GeO_2-P_2O_5$' Solid State Ionics, 104, 191-194 (1997).   DOI
28 J. Fu, 'Superionic Conductivity of Glass-Ceramics in the System $Li_2O-Al_2O_3-TiO_2-P_2O_5$' Solid State Ionics, 96, 195-200 (1997).   DOI
29 R. Murugan, V. Thangadurai, and W. Weppner, 'Fast Lithium Ion Conduction in Garnet-Yype $Li_7La_3Zr_2O_{12}$' Angew. Chem. Intern. Ed., 46, 7778-7781 (2007).   DOI
30 N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, 'A Lithium Superionic Conductor' Nature Mater., 10, 682-686 (2011).   DOI
31 Y. Seino, T. Ota, K. Tanaka, A. Hayashi, and M. Tatsumisago, 'A Sulphide Lithium Super-Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries' Energy Environ. Sci., 7, 627-631 (2014).   DOI
32 W. Liu, N. Liu, J. sun, P.C. Hsu, Y. Li, H.W. Lee, and Y. Cui, 'Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers' Nano Lett., 15, 2740-2745 (2015).   DOI
33 Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, 'High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors' Nature Energy, 1, 16030 (2016).   DOI
34 D.C. Lin, W. Liu, Y.Y. Liu, H.R. Lee, P.C. Hsu, K. Liu, and Y. Cui, 'High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed $SiO_2$ Nanospheres in Poly(ethylene oxide)' Nano Lett., 16, 459-465 (2016).   DOI
35 X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.W. Nan, and Y. Shen, 'Synergistic Coupling between $Li_{6.25}La_3Zr_{1.75}Ta_{0.25}O_{12}$ and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes' J. Am. Chem. Soc., 139, 13779-13785 (2017)   DOI
36 T. Tang, J. Zhang, Q. Cheng, Y.-Y. Han, and C.K. Chan, 'Composite Polymer Electrolytes with $Li_7La_3Zr_2O_{12}$ Garnet-Type Nanowire as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology' ACS Appl. Mater. Interf., 9, 21773-21780 (2017).   DOI
37 Y. Zhao, Y. Ding, Y. Li, L. Peng, H.R. Byon, J.B. Goodenough, and G. Yu, 'A Chemistry and Material Perspective on Lithium Redox Flow Batteries towards High-Density Electrical Energy Storage' Chem. Soc. Rev., 44, 7968-7996 (2015).   DOI
38 J. Zheng, M. Tang, and Y.-Y. Hu, 'Lithium Ion Pathway within $Li_7La_3Zr_2O_{12}$-Polyethylene Oxide Composite Electrolytes' Angew. Chem. Intern. Ed., 55, 12538-12542 (2016).   DOI
39 K.(K.) Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E.D. Wachsman, and L. Hu, 'Flexible, Solid-State, Ion-Conducting Membrane with 3D Garnet Nanofiber Networks for Lithium Batteries' Proc. Natl. Acad. Sci., 113, 7094-7099 (2016)   DOI
40 W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, and Y. Cui, 'Enhancing Ionic Conductivity in Composite Polymer Electrolytes with Well-Aligned Ceramic Nanowires' Nature Energy, 2, 17035 (2017).   DOI
41 D. Lin, P.Y. Yuen, Y. Liu, W. Liu, N. Liu, R.H. Dauskardt, and Y. Cui, 'A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus' Adv. Mater., 30, 1802661 (2018).   DOI
42 S. Wang, Q.X. Shi, Y.S. Ye, Y. Wang, H.Y. Peng, Z.G. Xue, X.L. Xie, and Y.W. Mai, 'Polymeric Ionic Liquid-Functionalized Mesoporous Silica Nanoplates: A New High-Performance Composite Polymer Electrolyte for Lithium Batteries' Electrochim. Acta, 245, 1010-1022 (2017).   DOI
43 W. Liu, D. Lin, J. sun, G. Zhou, and Y. Cui, 'Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires' ACS Nano, 10, 11407-11413 (2016).   DOI
44 X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, Y. Xiang, and Y. Cui, 'Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity' Nano Lett., 18, 3829-3838 (2018).   DOI
45 X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.-W. Lee, and Y. Cui, 'Solid-State Lithium-Sulfur Batteries Operated at $37^{\circ}C$ with Composites of Nanostructured $Li_7La_3Zr_2O_{12}$/Carbon Foam and Polymer' Nano Lett., 17, 2967-2972 (2017).   DOI
46 K. Takeda, 'Progress and Perspective of Solid-State Lithium Batteries' Acta Mater., 61, 759-770 (2013).   DOI
47 X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, 'Towards Safe Lithium Metal Anode in Rechargeable Lithium Batteries: A Review' Chem. Rev., 117, 10403-10473 (2017)   DOI
48 J. Haruyama, K. Sodeyama, L. Han, K. Takeda, and Y. Tateyama, 'Space-Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-ion Battery' Chem. Mater., 26, 4248-4255 (2014).   DOI