In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Wook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Chang-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Yong-Ku (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Suh, Dong-Hack (Department of Chemical Engineering, Hanyang University)
  • Published : 2008.07.31

Abstract

We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

Keywords

References

  1. B. O. Regan and M. GrStzel, Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. A. Hagfeldt and M.GrStzel, Chem. Rev., 9, 49 (1995)
  3. A. Hagfeldt and M. GrStzel, Acc. Chem. Res., 33, 269 (2000) https://doi.org/10.1021/ar980112j
  4. M.GrStzel, Nature, 414, 338 (2001) https://doi.org/10.1038/35104607
  5. M. Y. Song, K.-J. Kim, and D. Y. Kim, Macromol. Res., 14, 630 (2006) https://doi.org/10.1007/BF03218735
  6. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida, Chem. Commun., 4, 374 (2002)
  7. P. Wang, S. M. Zakeeruddin, I. Exnar, and M. GrStzel, Chem. Commun., 24, 2972 (2002)
  8. S. Mikoshiba, S. Murai, H. Sumino, and S. Hayase, Chem. Lett., 4, 918 (2002)
  9. K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe, and S. Yanagida, J. Photochem. Photobio. A: Chem., 164, 81 (2004) https://doi.org/10.1016/j.jphotochem.2004.01.023
  10. A. Noda and M. Watanabe, Electrochim. Acta, 45, 1265 (2000) https://doi.org/10.1016/S0013-4686(99)00330-8
  11. Y. Kang, H. J. Kim, K. H. Chng, and M. H. Lee, J. Power Sources, 92, 25 (2001)
  12. H. J. Kim, E. Kim, and S. B. Rhee, Korea Polym. J., 4, 83 (1996)
  13. Y. Kang, H. J. Kim, E. Kim, B. Oh, and J. H. Cho, Proc. Electrochem. Soc., 2599, 534 (1999)
  14. Z. Fei, W. H. Ang, D. Zhao, R. Scopelliti, E. E. Zvereva, S. A. Katsyuba, and P. J. Dyson, J. Phys. Chem. B, 111, 10095 (2007) https://doi.org/10.1021/jp073419l