Acknowledgement
이 논문은 2023년도 대한민국 교육부와 한국연구재단의 지원(NRF-2021S1A5A2A03065436)과 2024년도 대한민국 산업통상자원부 및 한국산업기술기획평가원의 연구비 지원(20026752)에 의해 수행된 연구임.
References
- J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22, 587 (2010). Doi: https://doi.org/10.1021/cm901452z
- M. S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chemical reviews, 114, 11414 (2014). Doi: https://doi.org/10.1021/cr5003003
- G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries, Nature Energy, 3, 373 (2018). Doi: https://doi.org/10.1038/s41560-018-0097-0
- M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, A Review of Degradation Mechanisms and Recent Achievements for Ni-Rich Cathode-Based Li-Ion Batteries, Advanced Energy Materials, 11, 2103005 (2021). Doi: https://doi.org/10.1002/aenm.202103005
- H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Metallic anodes for next generation secondary batteries, Chemical Society Reviews, 42, 9011 (2013). Doi: https://doi.org/10.1039/C3CS60177C
- C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
- P. V. Chombo, Y. Laoonual, A review of safety strategies of a Li-ion battery, Journal of Power Sources, 478, 228649 (2020). Doi: https://doi.org/10.1016/j.jpowsour.2020.228649
- B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: A review, Renewable and Sustainable Energy Reviews, 150, 111437 (2021). Doi: https://doi.org/10.1016/j.rser.2021.111437
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nature Materials, 10, 682 (2011). Doi: https://doi.org/10.1038/nmat3066
- S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application, Energy Storage Materials, 14, 58 (2018). Doi: https://doi.org/10.1016/j.ensm.2018.02.020
- L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries, Advanced Energy Materials, 8, 1702657 (2018). Doi: https://doi.org/10.1002/aenm.201702657
- D. H. S. Tan, E. A. Wu, H. Nguyen, Z. Chen, M. A. T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, Y. S. Meng, Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte, ACS Energy Letters, 4, 2418 (2019). Doi: https://doi.org/10.1021/acsenergy-lett.9b01693
- X. Bai, Y. Duan, W. Zhuang, R. Yang, J. Wang, Research progress in Li-argyrodite-based solid-state electrolytes, Journal of Materials Chemistry A, 8, 25663 (2020). Doi: https://doi.org/10.1039/D0TA08472G
- Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes, Nature Energy, 5, 299 (2020). Doi: https://doi.org/10.1038/s41560-020-0575-z
- C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics, Nano Energy, 83, 105858 (2021). Doi: https://doi.org/10.1016/j.nanoen.2021.105858
- L. Zhou, N. Minafra, W. G. Zeier, L. F. Nazar, Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries, Accounts of Chemical Research, 54, 2717 (2021). Doi: https://doi.org/10.1021/acs.accounts.0c00874
- Y.-J. Jang, H. Seo, Y.-S. Lee, S. Kang, W. Cho, Y. W. Cho, J.-H. Kim, Lithium Superionic Conduction in BH4-Substituted Thiophosphate Solid Electrolytes, Advanced Science, 10, 2204942 (2023). Doi: https://doi.org/10.1002/advs.202204942
- J.-H. Kim, Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries, Corrosion Science and Technology, 22, 287 (2023). Doi: https://doi.org/10.14773/CST.2023.22.4.287
- Y. Ren, T. Danner, A. Moy, M. Finsterbusch, T. Hamann, J. Dippell, T. Fuchs, M. Muller, R. Hoft, A. Weber, L. A. Curtiss, P. Zapol, M. Klenk, A. T. Ngo, P. Barai, B. C. Wood, R. Shi, L. F. Wan, T. W. Heo, M. Engels, J. Nanda, F. H. Richter, A. Latz, V. Srinivasan, J. Janek, J. Sakamoto, E. D. Wachsman, D. Fattakhova-Rohlfing, Oxide-Based Solid-State Batteries: A Perspective on Composite Cathode Architecture, Advanced Energy Materials, 13, 2201939 (2023). Doi: https://doi.org/10.1002/aenm.202201939
- A. Tarif, C.-J. Park, Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7-La3Zr2O12 Solid Electrolytes, Corrosion Science and Technology, 22, 408 (2023). Doi: https://doi.org/10.14773/CST.2023.22.6.408
- Y. Zhu, X. He, Y. Mo, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations, ACS Applied Materials & Interfaces, 7, 23685 (2015). Doi: https://doi.org/10.1021/acsami.5b07517
- A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes, Chemical reviews, 120, 6878 (2020). Doi: https://doi.org/10.1021/acs.chemrev.0c00101
- R. Koerver, F. Walther, I. Aygun, J. Sann, C. Dietrich, W. G. Zeier, J. Janek, Redox-active cathode interphases in solid-state batteries, Journal of Materials Chemistry A, 5, 22750 (2017). Doi: https://doi.org/10.1039/C7TA07641J
- A. Banerjee, H. Tang, X. Wang, J.-H. Cheng, H. Nguyen, M. Zhang, D. H. S. Tan, T. A. Wynn, E. A. Wu, J.-M. Doux, T. Wu, L. Ma, G. E. Sterbinsky, M. S. D'Souza, S. P. Ong, Y. S. Meng, Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries, ACS Applied Materials & Interfaces, 11, 43138 (2019). Doi: https://doi.org/10.1021/acsami.9b13955
- J. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec, R. Dedryvere, Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries, Chemistry of Materials, 29, 3883 (2017). Doi: https://doi.org/10.1021/acs.chemmater.6b04990
- F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W. G. Zeier, J. Janek, Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry, Chemistry of Materials, 31, 3745 (2019). Doi: https://doi.org/10.1021/acs.chemmater.9b00770
- J. Wakasugi, H. Munakata, K. Kanamura, Thermal Stability of Various Cathode Materials against Li6.25Al0.25La3Zr2O12 Electrolyte, Electrochemistry, 85, 77 (2017). Doi: https://doi.org/10.5796/electrochemistry.85.77
- L. Miara, A. Windmuller, C.-L. Tsai, W. D. Richards, Q. Ma, S. Uhlenbruck, O. Guillon, G. Ceder, About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature, ACS Applied Materials & Interfaces, 8, 26842 (2016). Doi: https://doi.org/10.1021/acsami.6b09059
- K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces, Advanced Energy Materials, 11, 2002689 (2021). Doi: https://doi.org/10.1002/aenm.202002689
- A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5 electrolyte, Journal of Power Sources, 189, 527 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2008.10.129
- N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Advanced Materials, 18, 2226 (2006). Doi: https://doi.org/10.1002/adma.200502604
- Y. Seino, T. Ota, K. Takada, High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte, Journal of Power Sources, 196, 6488 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.03.090
- J. S. Lee, Y. J. Park, Comparison of LiTaO3 and LiNbO3 Surface Layers Prepared by Post- and Precursor-Based Coating Methods for Ni-Rich Cathodes of All-Solid-State Batteries, ACS Applied Materials & Interfaces, 13, 38333 (2021). Doi: https://doi.org/10.1021/acsami.1c10294
- K. Okada, N. Machida, M. Naito, T. Shigematsu, S. Ito, S. Fujiki, M. Nakano, Y. Aihara, Preparation and electrochemical properties of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 for all-solid-state batteries, Solid State Ionics, 255, 120 (2014). Doi: https://doi.org/10.1016/j.ssi.2013.12.019
- Y.-J. Kim, R. Rajagopal, S. Kang, K.-S. Ryu, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chemical Engineering Journal, 386, 123975 (2020). Doi: https://doi.org/10.1016/j.cej.2019.123975