DOI QR코드

DOI QR Code

Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries

고체전해질과 양극의 계면 열화 반응

  • Jae-Hun Kim (School of Materials Science and Engineering, Kookmin University)
  • 김재헌 (국민대학교 신소재공학부)
  • Received : 2024.07.30
  • Accepted : 2024.08.13
  • Published : 2024.08.30

Abstract

The need for efficient and sustainable energy storage solutions has emerged due to a rapidly increasing energy demand and growing concerns about environmental issues. Among various energy storage methods, lithium secondary batteries are widely used in a variety of electronic devices such as smartphones, laptops, electric vehicles, and large-scale power storage systems due to their high energy density, long lifespan, and cost competitiveness. Recently, all-solid-state batteries (ASSBs) have attracted great attention because they can reduce the risk of fire associated with liquid electrolytes. Additionally, using high-capacity alternative anodes and cathodes in ASSBs can enhance energy density. However, ASSBs that use solid electrolytes experience a degradation in their electrochemical performances due to resistance at solid-solid interfaces. These interfaces can also result in poor physical contact and the presence of products formed from chemical and electrochemical reactions. Solving this interface problem is a critical issue for the commercialization of ASSBs. This review summarizes interfacial reactions between the cathode and solid electrolyte, along with research aimed at improving these interactions. Future development directions in this field are also discussed.

Keywords

Acknowledgement

이 논문은 2023년도 대한민국 교육부와 한국연구재단의 지원(NRF-2021S1A5A2A03065436)과 2024년도 대한민국 산업통상자원부 및 한국산업기술기획평가원의 연구비 지원(20026752)에 의해 수행된 연구임.

References

  1. J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22, 587 (2010). Doi: https://doi.org/10.1021/cm901452z
  2. M. S. Whittingham, Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chemical reviews, 114, 11414 (2014). Doi: https://doi.org/10.1021/cr5003003
  3. G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries, Nature Energy, 3, 373 (2018). Doi: https://doi.org/10.1038/s41560-018-0097-0
  4. M. Jiang, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, A Review of Degradation Mechanisms and Recent Achievements for Ni-Rich Cathode-Based Li-Ion Batteries, Advanced Energy Materials, 11, 2103005 (2021). Doi: https://doi.org/10.1002/aenm.202103005
  5. H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Metallic anodes for next generation secondary batteries, Chemical Society Reviews, 42, 9011 (2013). Doi: https://doi.org/10.1039/C3CS60177C
  6. C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
  7. P. V. Chombo, Y. Laoonual, A review of safety strategies of a Li-ion battery, Journal of Power Sources, 478, 228649 (2020). Doi: https://doi.org/10.1016/j.jpowsour.2020.228649
  8. B. Xu, J. Lee, D. Kwon, L. Kong, M. Pecht, Mitigation strategies for Li-ion battery thermal runaway: A review, Renewable and Sustainable Energy Reviews, 150, 111437 (2021). Doi: https://doi.org/10.1016/j.rser.2021.111437
  9. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nature Materials, 10, 682 (2011). Doi: https://doi.org/10.1038/nmat3066
  10. S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application, Energy Storage Materials, 14, 58 (2018). Doi: https://doi.org/10.1016/j.ensm.2018.02.020
  11. L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries, Advanced Energy Materials, 8, 1702657 (2018). Doi: https://doi.org/10.1002/aenm.201702657
  12. D. H. S. Tan, E. A. Wu, H. Nguyen, Z. Chen, M. A. T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, Y. S. Meng, Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte, ACS Energy Letters, 4, 2418 (2019). Doi: https://doi.org/10.1021/acsenergy-lett.9b01693
  13. X. Bai, Y. Duan, W. Zhuang, R. Yang, J. Wang, Research progress in Li-argyrodite-based solid-state electrolytes, Journal of Materials Chemistry A, 8, 25663 (2020). Doi: https://doi.org/10.1039/D0TA08472G
  14. Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes, Nature Energy, 5, 299 (2020). Doi: https://doi.org/10.1038/s41560-020-0575-z
  15. C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics, Nano Energy, 83, 105858 (2021). Doi: https://doi.org/10.1016/j.nanoen.2021.105858
  16. L. Zhou, N. Minafra, W. G. Zeier, L. F. Nazar, Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries, Accounts of Chemical Research, 54, 2717 (2021). Doi: https://doi.org/10.1021/acs.accounts.0c00874
  17. Y.-J. Jang, H. Seo, Y.-S. Lee, S. Kang, W. Cho, Y. W. Cho, J.-H. Kim, Lithium Superionic Conduction in BH4-Substituted Thiophosphate Solid Electrolytes, Advanced Science, 10, 2204942 (2023). Doi: https://doi.org/10.1002/advs.202204942
  18. J.-H. Kim, Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries, Corrosion Science and Technology, 22, 287 (2023). Doi: https://doi.org/10.14773/CST.2023.22.4.287
  19. Y. Ren, T. Danner, A. Moy, M. Finsterbusch, T. Hamann, J. Dippell, T. Fuchs, M. Muller, R. Hoft, A. Weber, L. A. Curtiss, P. Zapol, M. Klenk, A. T. Ngo, P. Barai, B. C. Wood, R. Shi, L. F. Wan, T. W. Heo, M. Engels, J. Nanda, F. H. Richter, A. Latz, V. Srinivasan, J. Janek, J. Sakamoto, E. D. Wachsman, D. Fattakhova-Rohlfing, Oxide-Based Solid-State Batteries: A Perspective on Composite Cathode Architecture, Advanced Energy Materials, 13, 2201939 (2023). Doi: https://doi.org/10.1002/aenm.202201939
  20. A. Tarif, C.-J. Park, Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7-La3Zr2O12 Solid Electrolytes, Corrosion Science and Technology, 22, 408 (2023). Doi: https://doi.org/10.14773/CST.2023.22.6.408
  21. Y. Zhu, X. He, Y. Mo, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations, ACS Applied Materials & Interfaces, 7, 23685 (2015). Doi: https://doi.org/10.1021/acsami.5b07517
  22. A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes, Chemical reviews, 120, 6878 (2020). Doi: https://doi.org/10.1021/acs.chemrev.0c00101
  23. R. Koerver, F. Walther, I. Aygun, J. Sann, C. Dietrich, W. G. Zeier, J. Janek, Redox-active cathode interphases in solid-state batteries, Journal of Materials Chemistry A, 5, 22750 (2017). Doi: https://doi.org/10.1039/C7TA07641J
  24. A. Banerjee, H. Tang, X. Wang, J.-H. Cheng, H. Nguyen, M. Zhang, D. H. S. Tan, T. A. Wynn, E. A. Wu, J.-M. Doux, T. Wu, L. Ma, G. E. Sterbinsky, M. S. D'Souza, S. P. Ong, Y. S. Meng, Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries, ACS Applied Materials & Interfaces, 11, 43138 (2019). Doi: https://doi.org/10.1021/acsami.9b13955
  25. J. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec, R. Dedryvere, Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries, Chemistry of Materials, 29, 3883 (2017). Doi: https://doi.org/10.1021/acs.chemmater.6b04990
  26. F. Walther, R. Koerver, T. Fuchs, S. Ohno, J. Sann, M. Rohnke, W. G. Zeier, J. Janek, Visualization of the Interfacial Decomposition of Composite Cathodes in Argyrodite-Based All-Solid-State Batteries Using Time-of-Flight Secondary-Ion Mass Spectrometry, Chemistry of Materials, 31, 3745 (2019). Doi: https://doi.org/10.1021/acs.chemmater.9b00770
  27. J. Wakasugi, H. Munakata, K. Kanamura, Thermal Stability of Various Cathode Materials against Li6.25Al0.25La3Zr2O12 Electrolyte, Electrochemistry, 85, 77 (2017). Doi: https://doi.org/10.5796/electrochemistry.85.77
  28. L. Miara, A. Windmuller, C.-L. Tsai, W. D. Richards, Q. Ma, S. Uhlenbruck, O. Guillon, G. Ceder, About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature, ACS Applied Materials & Interfaces, 8, 26842 (2016). Doi: https://doi.org/10.1021/acsami.6b09059
  29. K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. M. Rupp, Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces, Advanced Energy Materials, 11, 2002689 (2021). Doi: https://doi.org/10.1002/aenm.202002689
  30. A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, All-solid-state lithium secondary batteries with oxide-coated LiCoO2 electrode and Li2S-P2S5 electrolyte, Journal of Power Sources, 189, 527 (2009). Doi: https://doi.org/10.1016/j.jpowsour.2008.10.129
  31. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification, Advanced Materials, 18, 2226 (2006). Doi: https://doi.org/10.1002/adma.200502604
  32. Y. Seino, T. Ota, K. Takada, High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte, Journal of Power Sources, 196, 6488 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.03.090
  33. J. S. Lee, Y. J. Park, Comparison of LiTaO3 and LiNbO3 Surface Layers Prepared by Post- and Precursor-Based Coating Methods for Ni-Rich Cathodes of All-Solid-State Batteries, ACS Applied Materials & Interfaces, 13, 38333 (2021). Doi: https://doi.org/10.1021/acsami.1c10294
  34. K. Okada, N. Machida, M. Naito, T. Shigematsu, S. Ito, S. Fujiki, M. Nakano, Y. Aihara, Preparation and electrochemical properties of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 for all-solid-state batteries, Solid State Ionics, 255, 120 (2014). Doi: https://doi.org/10.1016/j.ssi.2013.12.019
  35. Y.-J. Kim, R. Rajagopal, S. Kang, K.-S. Ryu, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chemical Engineering Journal, 386, 123975 (2020). Doi: https://doi.org/10.1016/j.cej.2019.123975