• 제목/요약/키워드: Solid-electrolyte

검색결과 698건 처리시간 0.027초

펄스 도금법을 이용한 STS 316L 스테인리스강 상의 저온 염욕 알루미늄 코팅에 관한 연구 (Study of the Al-coating on the STS 316L Stainless Steel by Pulse Plating in the Molten Salts at Room Temperature)

  • 정세진;조계현
    • 한국표면공학회지
    • /
    • 제35권1호
    • /
    • pp.17-32
    • /
    • 2002
  • Electroplating methods by molten salts and non-aqueous melts were employed for aluminium coating on STS 316L stainless steel. After coated with Ni or non-coated surface on stainless steel, Al pulse plating was carried out in two different types of electrolytes at room temperature. The Al layer from $AlCl_3$-TMPAC melts could not obtain appreciable thickness for engineering application due to chemical reactions between deposits and moisture of air. However, The Al coating by pulse plating in the Ethylbenzene-Toluene-$AlBr_3$ systems was found to be solid coating layer with a few $\mu\textrm{m}$ scale. The conductivity of Ethylbenzene-Toluene-$AlBr_3$ electrolyte was as functions of time and agitation. By seven days exposure after mixing of the electrolyte, Al-deposited layer shows uniform and near by pore-free with high current density (higher than 30mA/$\textrm{cm}^2$). The roughness and imperfection of coating layer were decreased with a increasing agitation speed. It was found that the optimum condition for the Al pulse plating on the 316L stainless steel was a 400mA peak current, duty cycle, $t_{on}$ $t_{ off}$=3ms/1ms, and a current density of 30mA/$\textrm{cm}^2$.

Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ as a cathode for SOFC

  • Oh, Mi-Young;Jeong, Yong-Hoon;Oh, Se-Woong
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.498-506
    • /
    • 2016
  • Electrochemical measurement using a LSCF6428 electrode was performed to estimate the oxygen potential gradient in the electrode layer and a long time stability test was performed by applied potential to learn the overpotential effect on the LSCF6428 electrode. By fitting the observed impedance spectra, it was obtained that the amount of faradic current decreased with distance from cathode/electrolyte interface. Oxygen potential gradient was estimated to occur within 1 um region from the cathode/electrolyte interface at an oxygen partial pressure of 10-1 bar. The segregation of cation rich phases in the LSCF6428 electrode suggests that kinetic decomposition took place. However, impedance response after applying the potential showed no changes in the electrode compared with before applying potential. The obtained results suggest that segregation of a secondary phase in a LSCF6428 cathode is not related to performance degradation for solid oxide fuel cells (SOFCs).

고체 전해질을 이용한 새로운 전지에 관한 연구 (A Study on Solid Electrolyte for New Type Cell)

  • 박성호;조승구;김규홍;김용배;최재시
    • 대한화학회지
    • /
    • 제30권6호
    • /
    • pp.500-509
    • /
    • 1986
  • 새로운 전지의 개발을 위하여$ AgI-Ag_8S_3SO_4$system들을 만들어 이에 대한 전기전도도 측정, 상 연구 및 그 구조를 조사하였다. X-ray powder diffraction method로 20mole% $ Ag_8S_3SO_4$-AgI system의 구조가 단사정계임을 규명하였고 DTA method로 단일상을 이룸을 확인하였다. 4-probe method를 적용시켜 전기전도도를 측정한 결과 20mole% $ Ag_8S_3SO_4$-AgI system이 순수한 $ Ag^+ $이온성 couduct임을 밝힐 수가 있었다.

  • PDF

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조 (Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes)

  • 안성진;김용범;문주호;이종호;김주선
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.

Quenching 법을 이용한 리튬폴리머 전지용 $LiMnO_2$ 정극활물질의 전기화학적 특성 (Electrochemical properties of $LiMnO_2$ cathode materials by quenching method)

  • 전연수;김은미;김파;박경희;박복기;사공건;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.362-363
    • /
    • 2008
  • Well-defined o-$LiMnO_2$ cathode materials were synthesized using LiOH and $Mn_3O_4$ starting materials at $1050^{\circ}C$ in an argon flow by quenching method. The synthesized $LiMnO_2$ particles with crystalline phases were identified with X-ray diffraction (XRD, Dmax/1200, Rigaku). XRD results, demonstrated that the compound $LiMnO_2$ can be indexed to a single-phase material having the orthorhombic structure. In this paper, we analyzed the electrochemical performance of $LiMnO_2$/Li using solid polymer electrolyte and liquid electrolyte.

  • PDF

Proton-Conducting Electrolyte $CsH_2PO_4$ for Intermediate-Temperature Fuel Cell

  • 박치영;이수연;전민현;이광세;김재형;김정배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.218-218
    • /
    • 2007
  • 고체 전해질로서 $CsH_2PO_4$결정은 $230^{\circ}C$ 이상에서 전기전도도가 $10^{-2}\;{\Omega}^{-1}cm^{-1}$의 값에 도달하는 초양성자(Superprotonic) 상태로 상전이를 한다. 이러한 이유로 $CsH_2PO_4$ 결정은 $230^{\circ}C$ 부근에서 사용할 수 있는 연료전지로 개발되어왔다. 실용적인 면에서 단결정의 경우보다 다결정의 물성 및 응용 연구가 많았는데, 입자 크기에 따른 체계적인 연구는 잘 이루어지지 않았다. 본 발표에서는 $CsH_2PO_4$ 다결정을 합성하여 SEM 및 micro Raman spectra를 조사하였다. SEM의 결과 입자들의 평균 크기는 100 nm 이었으며, micro Raman spectra는 Bulk $CsH_2PO_4$의 spectra 와 큰 차이를 보이지 않았다. $PO_4$의 내부진동은 거의 같은 주파수대를 보여주나, $300\;cm^{-1}$이하의 저주파 수 영역에서는 광학적 포논의 픽이 잘 보이지 않았다. 그 원인이 micro Raman 장치의 측정 특성인지, 물리적 변화인지는 확실치 않다.

  • PDF

Parametric study for enhanced performance of Cu and Ni electrowinning

  • Kim, Joohyun;Kim, Han S.;Bae, Sungjun
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.201-206
    • /
    • 2019
  • In this study, we performed an electrowinning process for effective removal of metals (Cu and Ni) in solution and their recovery as solid forms. A complete removal of Cu and Ni (1,000 mg/L) was observed during four times recycling test, indicating that our electrowinning system can ensure the efficient metal removal with high stability and durability. In addition, we investigated effect of operation parameters (i.e., concentration of boric acid only for Ni, variation of pH, concentration of electrolyte ($H_2SO_4$), and cell voltage) on the efficiency of metal removal (Cu and Ni) during the electrowinning. The addition of boric acid significantly enhanced removal efficiency of Ni as the concentration of boric acid increased up to 10 g/L. Compared to negligible pH effect (pH 1, 2, and 4) on the Cu removal, we observed the increase in removal efficiency of Ni as the pH increased from 1 to 4. The electrolyte concentration did not significantly influence the removal of Cu and Ni in this study. We also obtained great removal rates of Cu and Ni at 2.5 V and 4.0 V, which were much faster than those at lower voltages. Finally, almost 99% of each Cu and Ni (1,000 mg/L) was selectively removed from the mixture of metals by adjusting pH and addition of boric acid after the completion of Cu removal. The findings in this study can provide a fundamental knowledge about effect of important parameters on the efficiency of metal recovery during the electrowinning.

리튬이온전지 열폭주에 대해 양극활물질이 미치는 영향에 대한 수치해석적 연구 (Numerical analysis on thermal runaway by cathode active materials in lithium-ion batteries)

  • 강명보;김남진
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2021
  • Lithium-ion batteries with high energy density, long cycle life and other advantages, have been widely used to energy storage systems(ESS). But as ESS fires frequently occur, the safety concern has become the main obstacle that hinders the large-scale applications of lithium-ion batteries. Especially, thermal runaway is the key scientific problem in battery safety research. Therefore, in this study, we performed a numerical analysis on the thermal runaway phenomenon of NCM111, NCM523 and NCM622 batteries using a two-dimensional analysis model. The results show that the two-dimensional simulation results are generally matched with three-dimensional simulation. Also, In the case of NCM111 with a low Ni content in the temperature range used in this study, thermal runaway phenomenon does occurred very slowly, but as the Ni content is increased, the thermal runaway phenomenon occurs rapidly and the thermal stability tends to be decreased. And, in NCM523 and NCM622 batteries, chain reactions occur almost simultaneously, but in the case of NCM111 battery, it is found that after the SEI(Solid Electrolyte Interface) layer decomposition reaction, the cathode-electrolyte reaction is appeared sequentially. After that, the anodic decomposition reaction is increased and leads to the thermal runaway reaction.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.