DOI QR코드

DOI QR Code

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Received : 2010.08.05
  • Accepted : 2010.09.28
  • Published : 2010.09.30

Abstract

The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Keywords

References

  1. J.R. MacCallum and C.A. Vincent, Polymer Electrolyte Reviews 1, 2, Elsevier, New York (1989).
  2. J. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  3. A.S. Aricó, P. Bruce, B. Scrosati, J.M. Tarascon, and W.V. Schalkwijk, Nat. Matters, 4, 366 (2005). https://doi.org/10.1038/nmat1368
  4. A.J. Bhattacharyya, J. Fleig, Y.G. Guo, and J. Maier, Adv. Mater. 17, 2630 (2005). https://doi.org/10.1002/adma.200500926
  5. P.V. Wright, Br. Polym. J., 7, 319 (1975). https://doi.org/10.1002/pi.4980070505
  6. P.V. Wright, MRS Bull., 27, 597 (2002). https://doi.org/10.1557/mrs2002.194
  7. B. Scrosati and C.A. Vincent, MRS Bull., 25, 28 (2000).
  8. D.F. Shriver and P.G. Bruce, Solid State Electrochemistry, Cambridge University Press, London (1995).
  9. P. Jannasch, Polymer, 42, 8629 (2001). https://doi.org/10.1016/S0032-3861(01)00373-1
  10. H.K. Yoon, W.S. Chung, and N.J. Jo, Electrochim. Acta, 50, 289 (2004). https://doi.org/10.1016/j.electacta.2004.01.095
  11. H. Tsutsumi and T. Kitagawa, Solid State Ionics, 177, 2683 (2006). https://doi.org/10.1016/j.ssi.2006.07.002
  12. K.H. Lee, J.K. Park, and W.J. Kim, Electrochim. Acta, 45, 1301 (2000). https://doi.org/10.1016/S0013-4686(99)00336-9
  13. B. Huang, A. Wang, G. Li, H. Huang, R. Xue, L. Chen, and F. Wang, Solid State Ionics, 85, 79 (1996). https://doi.org/10.1016/0167-2738(96)00044-6
  14. B.K. Choi, Y.W. Kim, and H.K. Shin, Electrochim. Acta, 45, 1371 (2000). https://doi.org/10.1016/S0013-4686(99)00345-X
  15. C.R. Yang, J.T. Perng, Y.Y. Wang, and C.C. Wan, J. Power Sources, 62, 89 (1996). https://doi.org/10.1016/S0378-7753(96)02414-7
  16. Y.W. Chen-Yang, H.C. Chen, F.J. Lin, and C.C. Chen, Solid State Ionics, 150, 327 (2002). https://doi.org/10.1016/S0167-2738(02)00457-5
  17. H.R. Allcock, F.W. Lampe, and J.E. Mark, Contemporary Polymer Chemistry, Pearson Eduation, Inc., New Jersey (2003).
  18. S.W. Ryu and A. Hirao, Macromolecules, 33, 4765 (2000). https://doi.org/10.1021/ma991793g
  19. S. Ramesh, T.F. Yuen, and C.J. Shen, Spectrochim. Acta, A69, 670 (2008).
  20. A. Nishimoto, K. Agehara, N. Furuya, T. Watanebe, and M. Watanabe, Macromolecules, 32, 1541 (1999). https://doi.org/10.1021/ma981436q