Browse > Article
http://dx.doi.org/10.5229/JECST.2017.8.4.265

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis  

Lim, Ahyoun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Cho, Min Kyung (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Lee, So Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University)
Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Park, Hyun S. (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.8, no.4, 2017 , pp. 265-273 More about this Journal
Abstract
Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.
Keywords
Water electrolysis; Anion exchange membrane; Electrocatalyst; Membrane electrode assembly;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Obama, Science, 2017, 355(6321), 126-129.   DOI
2 L. Barreto, A. Makihira, K. Riahi, Int. J. Hydrogen Energy, 2003, 28(3), 267-284.   DOI
3 U. Babic, M. Suermann, F.N. Buchi, L. Gubler, T.J. Schmidt, J. Electrochem. Soc., 2017, 164(4), F387-F399.   DOI
4 J.R. McKone, N.S. Lewis, H.B. Gray, Chem. Mater., 2014, 26(1), 407-414.   DOI
5 J.A. Turner, Science, 2004, 305(5686), 972-974.   DOI
6 J.O. Bokris, T. Otagawa, J. Phys. Chem., 1983, 87(15), 2960-2971.   DOI
7 C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 2013, 135(45), 16977-16987.   DOI
8 C. Xiang, K.M. Papadantonakis, N.S. Lewis, Mater. Horizons 2016, 3(3), 169-173.   DOI
9 M.K. Cho, H.-Y. Park, S. Choe, S.J. Yoo, J.Y. Kim, H.-J. Kim, D. Henkensmeier, S.Y. Lee, Y.-E. Sung, H.S. Park, J.H. Jang J. Power Sources, 2017, 347, 283-290.   DOI
10 D. Zang, K. Zeng, Prog. Energy Combust. Sci., 2010, 36,(3), 307-326.   DOI
11 D. Pletcher, X. Li, Int. J. Hydrog. Energy, 2011, 36(23), 15089-15104.   DOI
12 M.A. Laguna-Bercero, J. Power Sources, 2012, 203, 4-16.   DOI
13 J. Parrondo, C.G. Arges, M. Niedzwiecki, E.B. Anderson, K.E. Ayers, V. Ramani, RSC Adv., 2014, 4(19), 9875-9879.   DOI
14 J.E. Genovese, K. Harg, M. Paster, J.A. Turner, Independent Review Panel Summary Report, 2009.
15 H. Vandenborre, R. Leysen, H. Nackaerts, D. Van der Eecken, Ph. Van Asbroeck, W. Smets, J. Piepers Int. J. Hydrog. Energy, 1985, 10(11), 719-726.   DOI
16 S. A. Grigoriev, P. Millet, S.V. Korobtsev, V.I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, V.N. Fateev, Int. J. Hydrog. Energy, 2009, 34(14), 5986-5991.   DOI
17 T. Smolinka, 18th World Hydrog. Energy Conf. 2010 Essen, 2010.
18 A. Irshad, N. Munichandraiah, ACS Appl. Mater. Interfaces, 2015, 7(29), 15765-15776.   DOI
19 H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today, 2016, 11(5), 601-625.   DOI
20 M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, Nano Research, 2016, 9(1), 28-46.   DOI
21 M.K. Bates, Q. Jia, N. Ramaswamy, R.J. Allen, S. Mukerjee, J. Phys. Chem. C, 2015, 119(10), 5467-5477.   DOI
22 S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, T.F. Jaramillo, J. Mater. Chem. A, 2016, 4(8), 3068-3076.   DOI
23 D. Aili, M.K. Hansen, R.F. Renzaho, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, J. Membr. Sci., 2013, 447, 424-432.   DOI
24 C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem. Int. Ed., 2014, 53(5), 1378-1381.   DOI
25 L. Zeng, T.S. Zhao, Nano Energy, 2015, 11, 110-118.
26 M. Faraj, M. Boccia, H. Miller, F. Martini, S. Borsacchi, M. Geppi, A. Pucci, Int. J. Hydrog. Energy, 2012, 37(20), 14992-15002.   DOI
27 Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.-Y. Wang, J. Am. Chem. Soc., 2012, 134(22), 9054-9057.   DOI
28 J. Zhang, H. Zhang, J. Wu, J. Zhang, in: Pem Fuel Cell Testing and Diagnosis, Elsevier, Amsterdam, 2013.
29 S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Int. J. Hydrog. Energy, 2013, 38(35), 14934-14942.   DOI
30 http://www.actaspa.com/type/hydrogen-production/.
31 http://www.protononsite.com/hydrogen-fueling.
32 FY 2015 Annual Progress Report in DOE Hydrogen and Fuel Cell Program.
33 G. Gardner, J. Al-Sharab, N. Danilovic, Y.B. Go, K. Ayers, M. Greenblatt, G. Charles Dismukes, Energy Environ. Sci., 2016, 9(1), 184-192.   DOI
34 S. Jeong, J. Lee, S. Woo, J. Seo, B. Min, Energies, 2015, 8(7), 7084-7099.   DOI
35 X. Wu, K. Scott, J. Power Sources, 2012, 206, 14-19.   DOI
36 Y.-C. Cao, X. Wu, K. Scott, Int. J. Hydrog. Energy, 2012, 37(12), 9524-9528.   DOI
37 X. Wu, K. Scott, Int. J. Hydrog. Energy, 2013, 38(8), 3123-3129.   DOI
38 S.H. Ahn, B.-S. Lee, I. Choi, S.J. Yoo, H.-J. Kim, E. Cho, D. Henkensmeier, S.W. Nam, S.-K. Kim, J.H. Jang, Appl. Catal. B: Environ., 2014, 154-155, 197-205.   DOI
39 J. Parrondo, V. Ramani, J. Electrochem. Soc., 2014, 161(10), F1015-F1020.   DOI
40 X. Wu, K. Scott, F. Xie, N. Alford, J. Power Sources, 2014, 246, 225-231.   DOI
41 J. Parrondo, M. George, C. Capuano, K.E. Ayers, V. Ramani, J. Mater. Chem. A, 2015, 3(20), 10819-10828.   DOI
42 L.A. Diaz, J. Hnat, N. Heredia, M.M. Bruno, F.A. Viva, M. Paidar, H.R. Corti, K. Bouzek, G.C. Abuin, J. Power Sources, 2016, 312, 128-136.   DOI
43 S.H. Ahn, S.J. Yoo, H.-J. Kim, D. Henkensmeier, S.W. Nam, S.-K. Kim, J.H. Jang, Appl. Catal. B: Environ., 2016, 180, 674-679.   DOI
44 L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, J. Lu, Energy Environ Sci., 2012, 5(7), 7869-7871.   DOI