• 제목/요약/키워드: Solid oxide cells

검색결과 329건 처리시간 0.025초

고체산화물전지 접속자용 La0.6Sr0.4Fe1-xScxO3-δ의 상 안정성 및 전기화학 성능 (Redox Stability and Electrochemical Performances of La0.6Sr0.4Fe1-xScxO3-δ for Solid Oxide Cells Interconnector)

  • 곽민준;최현종;김태우;서두원;우상국;김선동
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.274-279
    • /
    • 2018
  • Sc-substituted $La_{0.6}Sr_{0.4}FeO_{3-{\delta}}$(LSFSc) has synthesized for ceramic interconnector of tubular solid oxide cells (SOCs). For improving the redox stability and electric conductivity of LSFSc, the compositions of Sc, pH value of mixed precursors, calcination temperature and times were optimizing. The electrochemical performances of $La_{0.6}Sr_{0.4}Fe_{1-x}Sc_xO_{3-{\delta}}$ powders were measured as depending on Sc composition. The electric conductivity and redox stability of $La_{0.6}Sr_{0.4}Fe_{1-x}Sc_xO_{3-{\delta}}$ was determined by Sc concentration. $La_{0.6}Sr_{0.4}Fe_{0.9}Sc_{0.1}O_{3-{\delta}}$ powders can be one of the stable composition for ceramic interconnector of tubular-SOCs.

Cyclo(Dehydrohistidyl-L-Tryptophyl), an Inhibitor of Nitric Oxide Production from a Fungal Strain, Fb956

  • Noh, Hyun-Jeong;Sohn, Mi-Jin;Yu, Hyung-Eun;Yoo, Ick-Dong;Kim, Won-Gon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권10호
    • /
    • pp.1717-1720
    • /
    • 2007
  • In the course of screening for nitric oxide inhibitors in activated microglial BV-2 cells, cyclo(dehydrohistidyl-L-tryptophyl) was isolated from solid-state fermentation cultures of an unidentified fungal strain, Fb956. Its structure was determined by spectroscopic methods including 2D NMR and chiral TLC analyses. Cyclo(dehydrohistidyl-L-tryptophyl) was found to have an inhibitory activity on nitric oxide production with an $IC_{50}$ of $6.5\;{\mu}M$ in activated BV-2 cells. The structure determination and biological activity of cyclo(dehydrohistidyl-L-tryptophyl) was reported for the first time in this study.

고체산화물 연료전지 스택 열화 방지를 위한 전해질 기술 (Bi-layer Electrolyte for Preventing Solid Oxide Fuel Cell Stack Degradation)

  • 박미영;배홍열;임형태
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.289-294
    • /
    • 2014
  • The stability of a solid oxide fuel cell (SOFC) stack is strongly dependent on the magnitude and profile of the internal chemical potential of the solid electrolyte. If the internal partial pressure is too high, the electrolyte can be delaminated from the electrodes. The formation of high internal pressure is attributed to a negative cell voltage, and this phenomenon can occur in a bad cell (with higher resistance) in a stack. This fact implies that the internal chemical potential plays an important role in determining the lifetime of a stack. In the present work, we fabricate planar type anode-supported cells ($25cm^2$) with a bi-layer electrolyte (with locally increased electronic conduction at the anode side) to prevent high internal pressure, and we test the fabricated cells under a negative voltage condition. The results indicate that the addition of electronic conduction in the electrolyte can effectively depress internal pressure and improve the cell stability.

Immunoregulation Effect of KamiBohuh-tang

  • Park Kyung Mi;Jung Jin Hong;Yoo Dong Youl
    • 동의생리병리학회지
    • /
    • 제16권1호
    • /
    • pp.186-191
    • /
    • 2002
  • The purpose of this study is to prove the efficacy of KamiBohuh-tang(KBT) on immunoregulation and the possibility of KBT as an immunoadjuvant. KBT with solid feed was administered orally once a day for 7 days to an experimental group, a solution of salt and solid feed without KBT to a control group. After a week T cell, B cell, cytokines, nitric oxide and phagocytic activity are measured. KBT enhanced the proliferation of splenocytes and the subpopulation of Th cells in splenic T-Iymphocytes, but did not affect the proliferation of thymocytes. KBT decreased the subpopulation of T-Iymphocytes in splenocytes. KBT enhanced the production of interferon-γ. interleukin-2, interleukin-4 in mice serum and the phagocytic activity in peritoneal macrophages but it suppressed the production of nitric oxide. These results suggest that KBT is a potent prescription on immune response via the increase of the proliferation of splenocytes, the production of cytokines from splenic Th cells and the phagocytic activity in vivo.

중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구 (Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC))

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

Application of Atomic Layer Deposition to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Ko, Myeong-Hee;Hwang, Hee-Soo;Hwang, Jin-ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.478.2-478.2
    • /
    • 2014
  • Atomic layer deposition (ALD) provides self-limiting processes based on chemisorption-based reactions. Such unique features allow for superior step coverage, atomic-scale control in thickness, and surface-dependent reaction controls. Furthermore, the surface-limited deposition enables the artificial deposition of oxide and/or metallic materials onto the porous systems as long as the supply is guaranteed in terms of time in providing reactant species and removing the byproducts and redundant reactants. The unique feature of atomic layer deposition is applied to solid oxide fuel cells whose incorporates two porous cathode and anode compartments in addition to the ionic electrolyte. Specific materials are deposited to the surface sites of porous electrodes, with the aim to controlling the triple phase boundaries crucial for the optimized SOFC performances. The effect of ALD on the SOFC performance is characterized using current-voltage characteristics in addition to frequency-dependent impedance spectroscopy. The pros and cons of ALD-controlled SOFCs are discussed toward high-performance SOFC systems.

  • PDF

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2011
  • Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

메탄 내부개질 반응을 통한 고체산화물 연료전지의 탄소침적 억제에 관한 연구 (A Study on the Suppression of Carbon Deposition in Solid Oxide Fuel Cells Through Methane Internal Reforming)

  • 강윤혁;임성광;유영성;박진우;배중면
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.473-481
    • /
    • 2007
  • Compared to other types of fuel cells, SOFC has advantages like a wide output range and the direct use of hydrocarbon fuel without the process of external reforming. Particularly because the direct use of fuel without reforming reaction is closely linked to overall system efficiency, it is a very attractive advantage. We tried the operation with methane. However, although methane has a small number of carbons compared to other hydrocarbon fuels, our experiment found the deposition of carbon on the surface of the SOFC electrode. To overcome the problem, we tried the operation through activating internal reforming. The reason that internal reforming was possible was that SOFC runs at high temperature compared to other fuel cells and its electrode is made of Ni, which functions as a catalyst favorable for steam reforming.

Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2012
  • The characteristic features of solid oxide fuel cells are reviewed from the viewpoint of the thermodynamic variables to be developed inside cells/stacks particularly in terms of gradients of chemical potential, electrical potential and temperature and corresponding flows of air, fuel, electricity and heat. Examples of abrupt destruction of SOFC systems were collected from failures in controlling their steady flows, while continuous degradation was caused by materials behaviors under gradients of chemical potentials during a long operation. The local equilibrium approximation has been adopted in NEDO project on the durability/reliability of SOFC stacks/systems; this makes it possible to examine the thermodynamic stability/reactivity as well as mass transfer under the thermodynamic variable gradients. Major results of the NEDO project are described with a focus on degradation/deterioration of electrolyte and electrode materials.