• Title/Summary/Keyword: Solid Substrate Fermentation

Search Result 64, Processing Time 0.022 seconds

Mevinolin Production by Monascus pilosus IFO 480 in Solid State Fermentation of Soymeal

  • Pyo, Young-Hee;Lee, Young-Chul
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.647-649
    • /
    • 2006
  • Mevinolin, a fungal metabolite, is a potent inhibitor of 3-hydroxy-methyl-3-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme in cholesterol biosynthesis. In this investigation, the optimum factors for mevinolin production by Monascus pilosus IFO 480 in soymeal fermentation were studied. The highest yield of mevinolin, 2.82 mg mevinolin per g dry weight, without citrinin (a toxic fungal secondary metabolite) was obtained after 21 days of fermentation at $30^{\circ}C$ at 65% moisture content, particle size 0.6-0.9 mm, and initial substrate pH of 6.0. Mevinolin was present in the fermentation substrate predominantly in the hydroxycarboxylate form (open lactone, 92.1-97.3%), which is currently being used as a hypocholesterolemic agent.

Statistical Optimization for Improved Production of Cyclosporin A in Solid-State Fermentation

  • Survase, Shrikant A.;Annapure, Uday S.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1385-1392
    • /
    • 2009
  • This work evaluates the effect of different amino acids on production of Cyclosporin (CyA) production in solid-state fermentation that was previously optimized for different fermentation parameters by one factor at-a-time for the maximum production of CyA by Tolypocladium inflatum MTCC557. Based on the Plackett-Burman design, glycerol, ammonium sulfate, $FeCl_3$, and inoculum size were selected for further optimization by response surface methodology (RSM). After identifying effective nutrients, RSM was used to develop mathematical model equations, study responses, and establish the optimum concentrations of the key nutrients for higher CyA production. It was observed that supplementation of medium containing (% w/w) glycerol, 1.53; ammonium sulfate, 0.95; $FeCl_3$, 0.18; and inoculum size 6.4 ml/5g yielded a maximum of 7,106 mg/kg as compared with 6,480 mg CyA/kg substrate using one factor at-a-time. In the second step, the effect of amino acids on the production of CyA was studied. Addition of $_L$-valine and $_L$-leucine in combination after 20 h of fermentation resulted in maximum production of 8,166 mg/kg.

Effects of Bacterial Fraction and Proportion of Silage and Concentrate on Rumen Fermentation and Gas Production Profile

  • Lee, Sang S.;Chang, M.B.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.643-647
    • /
    • 2004
  • An in vitro experiment was carried out to investigate effects of solid associated (SAB) and liquid associated bacteria (LAB) and the type of incubation substrate on ruminal fermentation and gas production profiles. Bacterial fraction did not influence total numbers of bacteria. Gas production degradation parameters were significantly influenced by bacterial fraction and type of substrate (p<0.05). There was significant interaction between bacterial fraction and type of substrate in gas production (p<0.01). Total VFA concentration and acetic and propionic acid ratio were also influenced by bacterial fraction and type of substrate with little differences in individual VFA concentration.

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

Transport Phenomena in Solid State Fermentation: Oxygen Transport in Static Tray Fermentors

  • Muniswaran, P.K.A.;Moorthy, S.Sundara;Charyulu, N.C.L.N.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.362-366
    • /
    • 2002
  • A mathematical model has been developed for describing the oxygen concentration during the exponential growth of microorganisms, in a static solid substrate bed supported on a tray fermentor. The model equations comprise of one partial differential equation for mass transfer and an ordinary differential equation of growth. After nondimensionlisation, analytical solution tn the model has been obtained by the method of Laplace transforms. An expression for critical thickness of bed is deduced from the model equation. The significance of the model in the design of tray fermentors is discussed. The validity of the discussion is verified by taking an illustration from the literature.

Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation (고체발효에서 반응표면분석법을 이용한 구연산 생산 최적화)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.879-884
    • /
    • 2012
  • In this present study, Aspergillus niger NRRL 567 was cultivated on an inert support material and the effects of various fermentation parameters including temperature, nutrient solution pH, inoculation level, and moisture content were observed and optimized by one-factor-at-a-time (OFAT) and response surface methodology (RSM), sequentially. It was found that the incubation temperature of $30^{\circ}C$ with 75% moisture content, nutrient solution pH of 7.1 and inoculation level of $4.0{\times}10^6$ spores/ml were the most favorable. Again, fermentation parameters were optimized using RSM. The determined optimum condition is $26.5^{\circ}C$, pH 9.9, 75.1%, and $6.0{\times}10^6$ spores/ml. Under this optimized condition, A. niger NRRL 567 produced 118.8 g citric acid/kg dry peat moss at 72 hr. Maximum citric acid production of optimized condition by RSM represented a 1.6-fold increase compared to that obtained from control experiment.

A Specific Short Dextrin-Hydrolyzing Extracellular Glucosidase from the Thermophilic Fungus Themoascus aurantiacus 179-5

  • Carvalho Ana Flavia Azevedo;Goncalves Aline Zorzetto;Silva Roberto da;Gomes Eleni
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.276-283
    • /
    • 2006
  • The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (${\alpha}$-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II ${\alpha}$-glucosidase. The optimum temperature of the enzyme was $70^{\circ}C$. In addition, the enzyme was highly thermostable (100% stability for 10 h at $60^{\circ}C$ and a half-life of 15 min at $80^{\circ}C$), and stable within a wide pH range.

미세조류의 Methane 발효특성

  • 강창민;최명락
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

The Influence of Kudzu Root Starch on the Growth and Metabolism of Baker's Yeast During Aerobic Semi-Solid Fermentation (반고상 발효에서의 빵 효모 증식과 신진대사에 대한 갈근 전분의 영향)

  • 박돈희;선우창신;로버트디태너;죠지밀러니
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.385-388
    • /
    • 1986
  • In a study of the aerobic growth of Baker's yeast (Saccharomyces cerevisiae) on Maxon-Johnson medium (with glucose as substrate) solidified with kudzu root starch, it was observed that between 8 and 24 hour incubation. 10 and 12% solids stimulated greater cell production than did 6 and 8% solids. The concentration of solids also affected thd secretion of protein from the yeast cells with the highest content of extracellular protein at 10-24 hour incubation stimulated by 10% starch solids.

  • PDF