A Specific Short Dextrin-Hydrolyzing Extracellular Glucosidase from the Thermophilic Fungus Themoascus aurantiacus 179-5

  • Carvalho Ana Flavia Azevedo (Laboratory of Biochemistry and Applied Microbiology, IBILCE, Sao Paulo State University) ;
  • Goncalves Aline Zorzetto (Laboratory of Biochemistry and Applied Microbiology, IBILCE, Sao Paulo State University) ;
  • Silva Roberto da (Laboratory of Biochemistry and Applied Microbiology, IBILCE, Sao Paulo State University) ;
  • Gomes Eleni (Laboratory of Biochemistry and Applied Microbiology, IBILCE, Sao Paulo State University)
  • Published : 2006.06.01

Abstract

The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (${\alpha}$-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II ${\alpha}$-glucosidase. The optimum temperature of the enzyme was $70^{\circ}C$. In addition, the enzyme was highly thermostable (100% stability for 10 h at $60^{\circ}C$ and a half-life of 15 min at $80^{\circ}C$), and stable within a wide pH range.

Keywords

References

  1. Alabaek, T, M. Reeslev, Bo. Jensen, and S.H. Eriksen. 2002. Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger. Enzyme Microb. Technol. 30, 410-415 https://doi.org/10.1016/S0141-0229(02)00006-6
  2. Anindyawati, T, Y g. Ann, K. Ito, M. Izzuka, and N. Minamiura. 1998. Two kinds of novel $\alpha$-glucosidases from Aspergillus awamori KT-11: their purifications, properties and specificities. J. Ferm. Bioeng. 85, 465-469 https://doi.org/10.1016/S0922-338X(98)80063-9
  3. Cereia, M., H.F Terenzi, J.A. Jorge, L..J. Greene, J.C. Rosa, and M.L.TM. Polizeli. 2000. Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. Biochemical and regulatory properties. J. Basic Microbiol. 40, 83-92 https://doi.org/10.1002/(SICI)1521-4028(200005)40:2<83::AID-JOBM83>3.0.CO;2-6
  4. Chaves, R.A.P., J.C.M. Carvalho, P. Perego, and L.C. Tavares. 2004. Production of alpha-amylase and glucoamylase from different starches by a new Trichoderma sp. isolate. Ann. Microbiol. 54, 169-180
  5. Chiba, S. 1997. Molecular mechanism in $\alpha$-glucosidase and glucoamylase. Biosci. Biotech. Biochem. 61, 1233-1239 https://doi.org/10.1271/bbb.61.1233
  6. Conesa, A., P.J. Punt, N. van Luijk, and C.A.M.J.J. Van den Hondel. 2001. The secretion in filamentous fungi: A biotechnological view. Fungal Gen. Biol. 33, 155-171 https://doi.org/10.1006/fgbi.2001.1276
  7. Cruz, R., E.L. Souza, E.H.E. Hoffmann, M.Z. Bellini, V.A. Cruz, and C.R. Vieira. 1997. Relationship between carbon source, production and pattern action of $\alpha$-amylase from Rhizopus sp. Rev. Microbiol. 28, 101-105
  8. Da Silva, C.H., P. Tomich, I. Carvalho, and C.A. Taft. 2005. Homology modeling and molecular interaction field studies of alpha-glucosidases as a guide to structure-based design of novel proposed anti-HIV inhibitors, J. Comput -Aided Mol. Des. 19, 83-92 https://doi.org/10.1007/s10822-005-1486-6
  9. Denison, S.H. 2000. pH regulation of gene expression in fungi. Fungal Gen. Biol. 29, 61-71 https://doi.org/10.1006/fgbi.2000.1188
  10. Dubey, A.K., C. Suresh, R. Kavitha, N.G. Karanth, and S. Umesh-Kumar. 2000. Evidence that the glucoamylase and $\alpha$-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme. FEBS Lett. 471, 251-255 https://doi.org/10.1016/S0014-5793(00)01410-1
  11. Faridmoayer, A., and C. Seaman. 2004. An improved purification procedure for soluble processing $\alpha$-glucosidase I from Saccharomyces cerevisiae overexpressing CWH41. Protein Exp. Purif. 33, 11-18 https://doi.org/10.1016/j.pep.2003.09.013
  12. Frandsen, T, and B. Svensson. 1998. Plant $\alpha$-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, resection mechanism, and comparison with family members of different origins. Plant Mol. Biol. 37, 1-13 https://doi.org/10.1023/A:1005925819741
  13. Gomes, E., S.R. Souza, R.P. Grandi, and R. Da Silva. 2005. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A 1.1 and Thermomyces lanuginosus A 13.37. Braz. J. Microbiol. 36, 75-82
  14. Hakamata, W., M. Muroi, K. Kadokura, T. Nishio, T. Oku, A. Kimura, S. Chiba, and A. Takatsuki. 2005. Aglycon specificity profiling of $\alpha$-glucosidases using synthetic probes. Bioorg. Med. Chem. Lett 15, 1489-1492 https://doi.org/10.1016/j.bmcl.2004.12.086
  15. Hartree-Lowry, E.F. 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422-427 https://doi.org/10.1016/0003-2697(72)90094-2
  16. Hata, Y, H. Ishida, Y Kojima, E. Ichikawa, A. Kawato, K. Sujirnoto, and S. Imayasu. 1997. Comparison of two glucoamylases produced by Aspergillus oryzae in solid-state culture (koji) and in submerged culture. J. Ferm. Bioeng. 84, 532-537 https://doi.org/10.1016/S0922-338X(97)81907-1
  17. Ishida, H., Y Hata, E. Ichikawa, A. Kawato, K. Suginami, and S. Imayasu. 1998. Regulation of the glucoamylase-encoding gene (glaB), expressed in solid-state fermentation culture (koji) of Aspergillus oryzae. J. Ferm. Bioeng. 86, 301-307 https://doi.org/10.1016/S0922-338X(98)80134-7
  18. James, J.A., and B.H. Lee. 1997. Glucoamylases: Microbial sources, industrial application and molecular biology. A review. J. Food Biochem. 21, 1-52 https://doi.org/10.1111/j.1745-4514.1997.tb00223.x
  19. Jensen, B. and J. Olsen. 1996. Extracellular $\alpha$-glucosidase with dextran-hydrolysing activity from the thermophilic fungus, Thermomyces lanuginosus . Curr. Microbiol. 33, 152-155 https://doi.org/10.1007/s002849900092
  20. Kaia, A., H. Matsui, A. Somoto, A. Kimura, M. Takata, and S. Chiba. 1991. Substrate specificity and sub site affinities of crystalline $\alpha$-glucosidase from Aspergillus niger. Agric. Biol. Chem. 55, 3237-2335
  21. Kita, A., H. Matsui, A. Sornoto, A. Kimara, M. Takata, S. Chiba, 1991. Substrate specificity and sub site affinities of crystalline $\alpha$-glucosidase from Aspergillus niger. Agric. Biol. chem. 55, 2327-2335 https://doi.org/10.1271/bbb1961.55.2327
  22. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426-428 https://doi.org/10.1021/ac60147a030
  23. Negret Urtasun, S., W. Reiter, E. Diez, S.H. Denison, J. Tilbur, E.A. Espeso, M.A. Penalva, and H.N. Arst. 1999. Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol. Microbiol. 33, 994-1003 https://doi.org/10.1046/j.1365-2958.1999.01540.x
  24. Papagianni, M. and M. Moo-Yong. 2002. Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Process Biochem. 37, 1271-1278 https://doi.org/10.1016/S0032-9592(02)00002-X
  25. Tanaka, Y, T. Aki, Y Hidaka, Y Furuya, S. Kawamoto, S. Shigeta, K. Ono, and O. Sizuki. 2002. Purification and characterization of a novel fungal $\alpha$-glucosidase from Mortierella alliacea with high starch-hydrolytic activity. Biosci., Biotechnol., Biochem. 66, 2415-2423 https://doi.org/10.1271/bbb.66.2415
  26. Torre-Bouscoulet, M.E., E. Lopez-Romero, R. Balcazar-Orosco, C. Calvo-Mendez, and A. Flores-Carreon. 2004. Partial purification and biochemical characterization of a soluble $\alpha$-glucosidase II-like activity from Candida albicans, FEMS Microbiol. Lett. 236, 123-128 https://doi.org/10.1111/j.1574-6968.2004.tb09637.x
  27. Wallis, G.L.F., R.J. Swift, R. Atterbury, S. Trappe, U. Rinas, F.W. Hemming, M.G. Wieb, A.P.J. Trinci, and J.F. Peberdy. 2001. The effect of pH on glucoamylase production, glycosylation and chemostat evolution of Aspergillus niger. Biochem. Bioph. Acta. 1527, 112-122 https://doi.org/10.1016/S0304-4165(01)00145-3
  28. Wang, Y, L. Ma, Z. Li, Z. Du, Z. Liu, J. Qin, X. Wang, Z. Huang, L. Gu, and A.S.C. Chen. 2004. Synergetic inhibition of metal ions and genistein on $\alpha$-glucosidase. FEES Lett. 576, 46-50 https://doi.org/10.1016/j.febslet.2004.08.059
  29. Yamasaki, Y, T. Miyake, and Y. Suzuki. 1973. Properties of crystalline $\alpha$-glucosidase from Mucor javanicus. Agric. Biol. Chem. 37, 251-259 https://doi.org/10.1271/bbb1961.37.251
  30. Zdzieblo, A., and J. Synowiecki. 2002. New source of the thermostable $\alpha$-glucosidase suitable for single step starch processing. Food Chem. 79, 485-491 https://doi.org/10.1016/S0308-8146(02)00224-8