Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11027

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization  

Maktouf, Sameh (Universite de Sfax, ENIS, Unite Enzymes et Bioconversion)
Kamoun, Amel (Universite de Sfax, ENIS, Laboratoire de Chimie Industrielle II)
Moulis, Claire (Universite de Toulouse, INSA, UPS, INP, LISBP)
Remaud-Simeon, Magali (Universite de Toulouse, INSA, UPS, INP, LISBP)
Ghribi, Dhouha (LISBP)
Chaabouni, Semia Ellouz (Universite de Toulouse)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.4, 2013 , pp. 489-498 More about this Journal
Abstract
A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.
Keywords
Bacillus sp.; amylase; solid-state fermentation; millet; characterization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ashis, K., M. B. Mukherjee, and R. K. Sudhir. 2009. To study the influence of different components of fermentable substrates on induction of extracellular alpha amylase synthesis by Bacillus subtilis DM-03 in solid state fermentation and exploration of feasibility for inclusion of alpha amylase in laundry detergent formulations. Biochem. Eng. J. 43: 149-156.   DOI   ScienceOn
2 Baysal, Z., F. Uyar, and C. Aytekin. 2003. Solid-state fermentation for production of alpha-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 38: 1665- 1668.
3 Doehlert, D. H. 1970. Uniform shell designs. Appl. Stat. 19: 231-239   DOI   ScienceOn
4 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
5 Dettori, B. G., F. G. Priest, and J. R Stark. 1992. Hydrolysis of starch granules by the amylase from Bacillus stearothermophilus NCA 26. Process Biochem. 27: 17-21.   DOI   ScienceOn
6 Dhayna, G., S. Sivaramakrishnan, K. M. Nampoothiri, and A. Pandey. 2006. Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol. Biotechnol. 44: 269-274.
7 Dubois, M., K. A Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.   DOI
8 Duedahl-Olesen, L., K. M. Kragh, and W. Zimmermann. 2000. Purification and characterization of a malto-oligosaccharideforming amylase active at high pH from Bacillus clausii BT-21. Carbohydr. Res. 329: 97-107.   DOI   ScienceOn
9 Egelseer, E., I. Schocher, and M. Sara. 1995. The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J. Bacteriol. 177: 1444-1451.
10 Ellaiah, P., K. Adinarayana, Y. Bhavani, P. Padmaja, and B. Srinivasulu. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620.   DOI   ScienceOn
11 Gangadaharan, D., K. M. Nampoothiri, S. Shivaramakrishnan, and A. Pandey. 2009. Biochemical characterization of raw-starchdigesting alpha amylase purified from Bacillus amyloliquefaciens. Appl. Biochem. Biotechnol. 158: 653-662.   DOI   ScienceOn
12 Goyal, N., J. K. Gupta, and S. K. Soni. 2005. A novel raw starch digesting thermostable $\alpha$-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol. 37: 723-734.   DOI   ScienceOn
13 Ghorbel, R. E., A. Kamoun, M. Neifar, and S. E. Chaabouni. 2009. Optimization of new flour improver mixing formula by response surface methodology. J. Food Process Eng. 3: 234-256.
14 Ghorbel, R. E., S. Maktouf, E. Ben Massoud, S. Bejar, and S. E. Chaabouni. 2009. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability. Appl. Biochem. Biotechnol. 157: 50-60.   DOI   ScienceOn
15 Goupy, J. 1999. Plans d'Experiences Pour Surfaces de Reponses. Dunod, Paris.
16 Gupta, R., P. Gigras, H. Mohapatra, V. K. Goswami, and B. Chauhan. 2003. Microbial alpha-amylases: A biotechnological perspective. Process Biochem. 38: 1599-1616.   DOI   ScienceOn
17 Gurtler, V. A. and V. A. Stanish. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16.   DOI   ScienceOn
18 Haq, I., H. Ashraf, M. A. Qadeer, and J. Iqbal. 2003. Production of alpha-amylase by Bacillus licheniformis using an economical medium. Bioresour. Technol. 87: 57-61.   DOI   ScienceOn
19 Kamoun, A., B. Samet, J. Bouaziz, and M. Chaabouni. 1999. Application of a rotatable orthogonal central composite design to the optimization of the formulation and utilization of a useful plasticizer for cement. Analysis 27: 91-96.   DOI   ScienceOn
20 Kelly, R. M., L. Dijkhuizen, and H. Leemhuis. 2009. Starch and α-glucan acting enzymes, modulating their properties by directed evolution. Biotechnol. J. 140: 184-193.   DOI   ScienceOn
21 Mulimani, V. H. and G. N. Ramalingam Patil. 2000. Amylase production by solid state fermentation: A new practical approach to biotechnology courses. Biochem. Edu. 28: 161-163.   DOI   ScienceOn
22 Natasa, B., J. Ruizb, J. López-Santínb, and Z. Vuj i . 2011. Production and properties of the highly efficient raw starch digesting $\alpha$-amylase from a Bacillus licheniformis ATCC 9945a. Biochem. Eng. J. 53: 203-209.   DOI   ScienceOn
23 Okolo, B. N., L. I. Ezeogu, and C. N. Mba. 1995. Production of raw starch digesting amylase by Aspergillus niger grown on native starch sources. J. Sci. Food Agric. 69: 109-115.   DOI   ScienceOn
24 Pandey, A., C. R. Soccol, and D. Mitchell. 2000. New developments in solid state fermentation: I. bioprocesses and products. Process Biochem. 35: 1153-1169.   DOI   ScienceOn
25 Puspasari, F., O. K. Radjasa, A. S. Noer, Z. Nurachman, Y. M. Syah, M. van der Maarel, et al. 2012. Raw starch-degrading $\alpha$- amylase from Bacillus aquimaris MKSC 6.2: Isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Appl. Microbiol. DOI: 10.1111/jam.12025(2012).
26 Sarabia, L. A. and M. C. Ortiz. 2009. Response surface methodology. In S. D. Brown, R. Tauler, and B. Walczak (eds.). Comprehensive Chemometrics: Chemical and Biochemical Data Analysis. Elsevier.
27 Shafiei, M., Z. Abed-Ali, and A. Mohammad Ali. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic $\alpha$- amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694-699.   DOI   ScienceOn
28 Singhania, E. E., A. K. Patel, C. R. Soccol, and A. Pandey. 2009. Recent advances in solid-state fermentation. Biochem. Eng. 44: 13-18.   DOI   ScienceOn
29 Sumner, J. and S. A. Howell. 1935. Method for determination of invertase activity. J. Biol. Chem. 108: 51-54.
30 Anto, H., U. Trivedi, and K. Patel. 2006. Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Food Technol. Biotechnol. 44: 241-245.
31 Adeyanju, M. M., F. K. Agboola, B. O. Omfuvbe, O. H. Oyefuga, and O. O. Adebavo. 2007. A thermostable extracellular α-amylase from Bacillus licheniformis isolated from cassava steep water. Biotechnology 6: 473-480.   DOI
32 American Association of Cereal Chemists (AACC). 2000. Approved Methods of the AACC, 10th Ed. Methods 46-30, 30-10, 44-19, 08-01. The American Association of Cereal Chemists, St. Paul, MN, USA.
33 Arikan, B. 2008. Highly thermostable, thermophilic, alkaline, SDS and chelating resistant amylase from thermophilic Bacillus isolate A3-15. Bioresour. Technol. 99: 3071-3076.
34 Asgher, M., M. J. Asad, S. U. Rahman, and R. L. Legge. 2007. A thermostable amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950-955.   DOI   ScienceOn
35 Kunamneni, A., S. K. Kuttanpillai, and S. Suren. 2005. Response surface methodological approach to optimize the nutritional parameters for enhanced production of alpha-amylase in solid state fermentation by Thermomyces lanuginosus. Afr. J. Biotechnol. 4: 708-716.
36 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
37 Kikani, B. A. and S. P. Singh. 2011. Single step purification and characterization of a thermostable and calcium independent α- amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int. J. Biol. Macromol. 48: 676-681.   DOI   ScienceOn
38 Kim, K. H., S. W. Suh, and M. U. Choi. 1991. Spectroscopic and electrophoretic studies on structural stability of alphaamylase from Bacillus amyloliquefaciens. Korean J. Biochem. 24: 158-167.
39 Lewis, G. A., D. Mathieu, and R. Phan-Tan-Luu. 1999. Pharmaceutical Experimental Design. Marcel Dekker, New York.
40 Lin, L. L., C. C. Chyau, and W. H. Hsu. 1998. Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem. 28: 61-68.
41 Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M.Guisan, and R. Fernandez-Lafuente. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463.   DOI   ScienceOn
42 Mathieu, D., J. Nony, and R. Phan-Tan-Luu. 2000. NEMRODW software. LPRAI, Marseille, France.
43 Mitsuiki, S., K. Mukae, M. Sakai, M. Goto, S. Hayashida, and K. Furukawa. 2005. Comparative characterization of raw starch hydrolyzing $\alpha$-amylases from various Bacillus strains. Enzyme Microb. Technol. 37: 410-416.   DOI   ScienceOn
44 Pandey, A., P. Nigam, C. Soccol, V. T. Sccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152.   DOI   ScienceOn