• Title/Summary/Keyword: Solid Geometry

Search Result 277, Processing Time 0.029 seconds

Effects of Surface Roughness and Interface Wettability in a Nanochannel (나노 채널에서의 표면 거칠기와 경계 습윤의 효과)

  • Choo, Yun-Sik;Seo, In-Soo;Lee, Sang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load (강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구)

  • Shin, JungHun;Jung, DongSoo;Kim, KyungWoong
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

Powder Densification Using Equal Channel Angular Pressing (ECAP 공정을 이용한 분말의 치밀화)

  • Yoon Seung-Chae;Seo Min-Hong;Hong Sun-Ig;Kim Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

Characterization of a LSCF/GDC Cathode Composite in Solid Oxide Fuel Cells Using Impedance Spectroscopy

  • Hwang, Jin-Ha;Lee, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.793-799
    • /
    • 2005
  • A composite cathode of LSCF$(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3)\;and\;GDC\; (Gd_2O_3-doped\;CeO_2:Ce_{0.9}Gd_{0.1}O_{1.95_})$ was characterized in terms of an electrode response, using a point contact in an Yttria-Stabilized Zirconia (YSZ) electrolyte incorporated into AC two-point impedance spectroscopy. The point-contacted configuration amplifies the responses occurring near the YSZ/cathode interface through the aligned point contact on the planar LSCF/GDC electrode. The point contact interface increases the bulk resistance allowing the estimation of the point contact geometry and resolving the electrode-related responses. The resultant impedance spectra are analyzed through an equivalent circuit model constructed by resistors and constant phase elements. The bulk responses can be resolved from the electrode-related portions in terms of spreading resistance. The electrode-related polarizations are measured in terms of temperature and oxygen partial pressure. The modified impedance spectroscopy is discussed in terms of methodology and analytical aspects, toward resolving the electrode-polarization issues in solid oxide fuel cells.

A NEW APPROACH FOR DESIGN AND OPTIMIZATION OF SRM WAGON WHEEL GRAIN

  • Nisar, Khurram;Liang, Guozhu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.247-254
    • /
    • 2008
  • The primary objective of this research is to develop an efficient design and optimization methodology for SRM Wagon Wheel Grain and to develop of software for practical designing and optimization of Wagon Wheel grains. This work will provide a design process reference guide for engineers in the field of Solid Rocket Propulsion. Using these proposed design methods, SRM Wagon Wheel grains can be designed for various geometries, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design in least possible iterations & time. The main focus is to improve computational efficiency at various levels of the design work. These have been achieved by the following way. a. Evaluation of system requirements and design objectives. b. Development of Geometric Model of Wagon Wheel grain configuration. c. Internal ballistic performance predictions. d. Preliminary designing of the Wagon Wheel grain configuration involving various independent geometric variables. e. Optimization of the grain configuration using Sequential Quadratic Programming f. In depth analysis of the optimal results considering affects of various geometric variables on ballistic parameters and analysis of performance prediction outputs have been performed g. Development of software for design and optimization of Wagon Wheel Grain. By using these proposed design methods, SRM Wagon Wheel grains can be designed by using geometric model, their optimal solutions can be found and best possible configuration be attained thereby ensuring finest design.

  • PDF

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

Seat Tightness of Flexible Metal Seal of Butterfly Valve at Cryogenic Temperatures (초저온 버터플라이 밸브용 탄성 메탈실의 누설방지에 관한 연구)

  • Ahn, Jun-Tae;Lee, Kyung-Chul;Lee, Yong-Bum;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.643-649
    • /
    • 2011
  • For the development of butterfly valves used in liquefied natural gas (LNG) vessels, the seat tightness is one of the important factors to be taken into account in the valve-design process. An O-ring-type metal seal with a retaining ring showing good seat tightness at cryogenic temperatures has been widely used, despite the high manufacturing costs involved. As an alternative, a flexible solid metal seal offers not only sufficient tightness of the butterfly valve, meeting specification requirements, but also relatively low manufacturing costs. In this study, a design criterion to ensure the seat tightness of the butterfly valve using the flexible solid metal seal is proposed. The contact pressure can be calculated by the simulation of the frictional contact behavior between the surface of the metal seal and the valve disc. The geometry of the flexible solid metal seal is determined so that it satisfies the design criterion for sufficient seat tightness, and is verified by experiments according to BS6755 and BS6364.

Augmented Reality based Learning System for Solid Shapes (증강현실 기반 입체도형 학습도구 시스템)

  • Yeji Mun;Daehwan Kim;Dongsik Jo
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.45-51
    • /
    • 2024
  • Recently, realistic contents such as virtual reality(VR) and augmented reality (AR) are widely used for education to provide beneficial learning environments with thee-dimensional(3D) information and interactive technology. Specially, AR technology will be helpful to intuitively understand by adding virtual objects registered in the real learning environment with effective ways. In this paper, we developed an AR learning system using 3D spatial information in the 2D based textbook for studying math related to geometry. In order to increase spatial learning effect, we applied to solid shapes such as prisms and pyramids in mathematics education process. Also, it allows participants to use various shapes and expression methods (e.g., wireframe mode) with interaction. We conducted the experiment with our AR system, evaluated achievement and interest. Our experimental study showed positive results, our results are expected to provide effective learning methods in various classes through realistic visualization and interaction methods.