Browse > Article
http://dx.doi.org/10.4150/KPMI.2006.13.2.124

Powder Densification Using Equal Channel Angular Pressing  

Yoon Seung-Chae (School of Nano Engineering, Chungnam National University)
Seo Min-Hong (School of Nano Engineering, Chungnam National University)
Hong Sun-Ig (School of Nano Engineering, Chungnam National University)
Kim Hyoung-Seop (School of Nano Engineering, Chungnam National University)
Publication Information
Journal of Powder Materials / v.13, no.2, 2006 , pp. 124-128 More about this Journal
Abstract
In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.
Keywords
Powder Densification; Equal Channel Angular Pressing; Bulk Mechanical Alloying; Shear Deformation; Severe Plastic Deformation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig and I. E. Anderson: J. Non-Crystal. Solids, 317 (2003) 144   DOI   ScienceOn
2 S.Y. Chang, K.S. Lee, S.H. Choi and D. H. Shin: J. Alloys Comp., 354 (2003) 216   DOI   ScienceOn
3 G. G. Yapici, I. Kamman, Z. P. Luo and H. Rack: Scripta Mater., 49 (2003) 1021   DOI   ScienceOn
4 I. V. Alexandrov, K. Zhang, A. R Kilmametov, K. Lu and RZ. Valiev: Mater. Sci. Eng., A234-236 (1997) 331
5 Y. lwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon: Scripta Mater., 35 (1996) 143   DOI   ScienceOn
6 H. S. Kim: Mater. Sci. Eng., A251 (1999) 100
7 S. J. Hong, H. S. Kim, T.S. Kim, W. T. Kim and B. S. Chun: Mater. Sci. Eng., A271 (1999) 466
8 V. M. Segal: Mater. Sci. Eng., A197 (1995) 157
9 B. S. Moon, M. H. Seo, Y. S. Kim, K. H. Lee, H. S. Kim and S. I. Hong: Mater. Sci. Forum, 386-388 (2002) 577
10 R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. ANazarov and B. Baudelet: Acta Metal., 42 (1994) 2467   DOI   ScienceOn
11 M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon: Acta Mater., 44 (1996) 4619
12 H. S. Kim, M. H. Seo and S. I. Hong: Mater. Sci. Eng., A291 (2000) 86
13 H. S. Kim: J. Mater. Res., 17 (2002) 172   DOI   ScienceOn
14 H. S. Kim: Mater. Trans., 42 (2001) 536   DOI   ScienceOn
15 H. S. Kim: Mater. Sci. Eng., A315 (2001) 122
16 J. Alkorta and J. Gil Sevillano: J. Mater. Proc. Tech., 141 (2003) 313   DOI   ScienceOn
17 H. S. Kim: Mater. Sci. Eng., A328 (2002) 317
18 H. S. Kim, S. 1. Hong and M. H. Seo: J. Mater. Res., 16 (2001) 856   DOI   ScienceOn
19 A. Parasiris and K. T. Hartwig: Inter. J. Refrac. Met. Hard Mater., 18 (2000) 23   DOI   ScienceOn
20 V. M. Skripnyuk, E. Rabkin, Y. Estrin and R. Lapovok: Acta Mater., 52 (2004) 405   DOI   ScienceOn
21 K. Matsuki, T. Aida, T. Takeuchi, J. Kusui and K. Yokoe: Acta Mater., 48 (2000) 2625   DOI   ScienceOn