DOI QR코드

DOI QR Code

Powder Densification Using Equal Channel Angular Pressing

ECAP 공정을 이용한 분말의 치밀화

  • Yoon Seung-Chae (School of Nano Engineering, Chungnam National University) ;
  • Seo Min-Hong (School of Nano Engineering, Chungnam National University) ;
  • Hong Sun-Ig (School of Nano Engineering, Chungnam National University) ;
  • Kim Hyoung-Seop (School of Nano Engineering, Chungnam National University)
  • Published : 2006.04.01

Abstract

In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

Keywords

References

  1. V. M. Segal: Mater. Sci. Eng., A197 (1995) 157
  2. B. S. Moon, M. H. Seo, Y. S. Kim, K. H. Lee, H. S. Kim and S. I. Hong: Mater. Sci. Forum, 386-388 (2002) 577
  3. R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. ANazarov and B. Baudelet: Acta Metal., 42 (1994) 2467 https://doi.org/10.1016/0956-7151(94)90326-3
  4. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon: Acta Mater., 44 (1996) 4619
  5. H. S. Kim, M. H. Seo and S. I. Hong: Mater. Sci. Eng., A291 (2000) 86
  6. H. S. Kim: Mater. Trans., 42 (2001) 536 https://doi.org/10.2320/matertrans.42.536
  7. H. S. Kim, S. 1. Hong and M. H. Seo: J. Mater. Res., 16 (2001) 856 https://doi.org/10.1557/JMR.2001.0113
  8. H. S. Kim: Mater. Sci. Eng., A315 (2001) 122
  9. J. Alkorta and J. Gil Sevillano: J. Mater. Proc. Tech., 141 (2003) 313 https://doi.org/10.1016/S0924-0136(03)00282-6
  10. H. S. Kim: J. Mater. Res., 17 (2002) 172 https://doi.org/10.1557/JMR.2002.0026
  11. H. S. Kim: Mater. Sci. Eng., A328 (2002) 317
  12. H. S. Kim: Mater. Sci. Eng., A251 (1999) 100
  13. S. J. Hong, H. S. Kim, T.S. Kim, W. T. Kim and B. S. Chun: Mater. Sci. Eng., A271 (1999) 466
  14. I. V. Alexandrov, K. Zhang, A. R Kilmametov, K. Lu and RZ. Valiev: Mater. Sci. Eng., A234-236 (1997) 331
  15. A. Parasiris and K. T. Hartwig: Inter. J. Refrac. Met. Hard Mater., 18 (2000) 23 https://doi.org/10.1016/S0263-4368(00)00005-6
  16. K. Matsuki, T. Aida, T. Takeuchi, J. Kusui and K. Yokoe: Acta Mater., 48 (2000) 2625 https://doi.org/10.1016/S1359-6454(00)00061-6
  17. J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig and I. E. Anderson: J. Non-Crystal. Solids, 317 (2003) 144 https://doi.org/10.1016/S0022-3093(02)01995-6
  18. S.Y. Chang, K.S. Lee, S.H. Choi and D. H. Shin: J. Alloys Comp., 354 (2003) 216 https://doi.org/10.1016/S0925-8388(03)00008-2
  19. G. G. Yapici, I. Kamman, Z. P. Luo and H. Rack: Scripta Mater., 49 (2003) 1021 https://doi.org/10.1016/S1359-6462(03)00484-6
  20. V. M. Skripnyuk, E. Rabkin, Y. Estrin and R. Lapovok: Acta Mater., 52 (2004) 405 https://doi.org/10.1016/j.actamat.2003.09.025
  21. Y. lwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon: Scripta Mater., 35 (1996) 143 https://doi.org/10.1016/1359-6462(96)00107-8