DOI QR코드

DOI QR Code

Effects of Surface Roughness and Interface Wettability in a Nanochannel

나노 채널에서의 표면 거칠기와 경계 습윤의 효과

  • 추연식 (한양대학교 대학원 기계공학과) ;
  • 서인수 (한양대학교 대학원 기계공학과) ;
  • 이상환 (한양대학교 기계공학과)
  • Received : 2009.09.03
  • Accepted : 2010.03.26
  • Published : 2010.04.01

Abstract

The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

Keywords

References

  1. Gad-el-Hak, 2002, “Flow physics in MEMS”, The MEMS Handbook, Boca Raton, FL:CRC Press.
  2. Yingxi Zhu and Steve Granick, 2002, “Limits of the hydrodynamic no-slip boundary condition”, Phys. Rev. Lett., Vol.88, pp. 106102. https://doi.org/10.1103/PhysRevLett.88.106102
  3. H.L. Zhao, C. Zhou, Y.X. Cai, and F.C. Zhang, 2008, “Nanostructure analysis of graded oxidation coated glass prepared by APCVD on-lin”, Materials Letter, Vol.62, pp. 140-142. https://doi.org/10.1016/j.matlet.2007.04.106
  4. Chiara Neto, Drew R Evans, Elmar Bonaccurso, Hans-Jurgen Butt, and Vincent S J Craig, 2005, “Boundary slip in Newtonian liquids : a review of experimental studies”, Rep. Prog. Phys. Vol.68, pp. 2859-2897. https://doi.org/10.1088/0034-4885/68/12/R05
  5. Jonathan S. Ellis and Michael Thompson, 2004, “Slip and coupling phenomena at the liquid-solid interface”, Phys. Chem. Chem. Phys., Vol.6, pp. 4928-4938. https://doi.org/10.1039/b409342a
  6. Steve Granick, yincxi Zhu, and HyunJung Lee, 2003, “Slippery questions about complex fluids flowing past solids”, Nature Materials, Vol.2, pp. 221-227. https://doi.org/10.1038/nmat854
  7. S. C. Yang, 2006, “Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel”, Microfluid nanofluid, Vol. 2, pp. 501-511. https://doi.org/10.1007/s10404-006-0096-5
  8. Cecile Cottin-Bizonne, Jean-Louis Barrat, Lyderic Bocquet and Elisabeth Charlaix, 2003, “Low-fricition flows of liquid at nanopatterned interfaces”, Nat. Mater.t, Vol. 2, pp. 237-240. https://doi.org/10.1038/nmat857
  9. A. Jabbarzadeh, J.D. Atkinson, and R.I. Tanner, 2000, “Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls”, Phys. Rev. E, Vol.61, pp. 690-699. https://doi.org/10.1103/PhysRevE.61.690
  10. Bing-Yang Cao, Min Chen, and Zeng-Yuan Guo, 2006, “Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation”, Int. J. Eng. Sci., Vol.44, pp. 927-937. https://doi.org/10.1016/j.ijengsci.2006.06.005
  11. Gan Mo and Franz Rosenberger, 1990, “Molecular-dynamics simulation of flow in a two-dimensional channel with atomically rough walls”, Phys. Rev. A, Vol.42, pp. 4688-4692. https://doi.org/10.1103/PhysRevA.42.4688
  12. M.P. Allen, D.J. Tildesley, 1987, “Computer simulation of liquids”,Oxford University Press.
  13. Norio Ohtomo, Yukio Tanaka, 1987, “Liquid Argon : Molecular Dynamics Calculations for the dynamic properties”, J. Phys. Soc. Jap., Vol.56, pp. 2801-2813. https://doi.org/10.1143/JPSJ.56.2801
  14. Jean-Louis Barrat and Lyderic Bocquet, 1999, “Large slip effect at a nonwetting fluid-solid interface”, Phys. Rev. Lett., Vol. 82, No. 23, pp. 4671-4674. https://doi.org/10.1103/PhysRevLett.82.4671
  15. Elmar Bonaccurso, Hans-Jurgen Butt, and Vincent S.J. Craig, 2003, “Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System”, Phys. Rev. Lett., Vol.90, pp. 144501. https://doi.org/10.1103/PhysRevLett.90.144501
  16. J.G. Powles, S. Murad, and P.V. Ravi, 1992, “A new model for permable micropores”, Chem. Phys. Lett., Vol.188, pp. 21-24. https://doi.org/10.1016/0009-2614(92)85082-L
  17. Denis J. Evans, William G. Hoover, Bruce H. Failor, Bill Moran, and Anthony J.C. Ladd, 1983, “Nonequilibrium molecular dynamics via Gauss’s principle of least constraint”, Phys. Rev. A, Vol.28, pp. 1016-1021. https://doi.org/10.1103/PhysRevA.28.1016
  18. Martin W. Tysanner and Alejandro L. Garcia, 2004, “Measurement bias of fluid velocity in molecular simulations”, J. Comp. Phys., Vol.196, pp. 173-183. https://doi.org/10.1016/j.jcp.2003.10.021
  19. B.D. Todd and Denis J. Evans, 1997, “Temperature profile for Poiseuille flow”, Phys. Rev. E, Vol.55, pp. 2800-2807. https://doi.org/10.1103/PhysRevE.55.2800
  20. Roland Steitz, Thomas Gutberlet, Thomas Hauss, Beate Klosgen, Rumen Krastev, Sebastian Schemmel, Adam C. Simonsen, and Gerhard H. Findenegg, 2003, “nanobubbles and Their Precursor Layer at the Interface of Water Against a Hydrophobic Substrate”, Langmuir, Vol.19, pp. 2409-2418. https://doi.org/10.1021/la026731p
  21. James W.G. Tyrrell and Phil Attard, 2001, “Images of nanobubbles on Hydrophobic Surfaces and Their Interactions”, Phys. Rev. Lett., Vol.87, pp. 176104. https://doi.org/10.1103/PhysRevLett.87.176104
  22. S. Iarlori, P. Carnevali, F. Ercolessi, and E. Tosatti, 1989, “Dynamics of a Liquid-Metal Surface”, Europhys. Lett., 10, pp. 329-334. https://doi.org/10.1209/0295-5075/10/4/008