• Title/Summary/Keyword: Solder Bonding

Search Result 171, Processing Time 0.029 seconds

Novel Bumping Process for Solder on Pad Technology

  • Choi, Kwang-Seong;Bae, Ho-Eun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.340-343
    • /
    • 2013
  • A novel bumping process using solder bump maker is developed for the maskless low-volume solder on pad (SoP) technology of fine-pitch flip chip bonding. The process includes two main steps: one is the aggregation of powdered solder on the metal pads on a substrate via an increase in temperature, and the other is the reflow of the deposited powder to form a low-volume SoP. Since the surface tension that exists when the solder is below its melting point is the major driving force of the solder deposit, only a small quantity of powdered solder adjacent to the pads can join the aggregation process to obtain a uniform, low-volume SoP array on the substrate, regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of $130{\mu}m$ is successfully formed.

Development of New COG Technique Using Eutectic Bi-Sn and In-Ag Solder Bumps for Flat Panel Display

  • Kang, Un-Byoung;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.270-274
    • /
    • 2002
  • We have developed a new COG technique using flip chip solder joining technology for excellent resolution and high quality LCD panels. Using the eutectic Bi-Sn and the eutectic In-Ag solder bumps of 50-80 ${\mu}m$ pitch sizes, a ultrafine interconnection between IC and glass substrate was successfully made at or below $160^{\circ}C$. The contact resistance and reliability of Bi-Sn solder joint showed the superiority over the conventional ACF bonding.

  • PDF

Thermo-compression Bonding of Electrodes between RPCB and FPCB using Sn-Pb Solder (Sn-Pb 솔더를 이용한 경연성 인쇄 회로 기판간의 열압착 본딩)

  • Choi, Jung-Hyun;Lee, Jong-Gun;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.11-15
    • /
    • 2010
  • In this paper, we focused on the optimization of bonding conditions for the successful thermo-compression bonding of electrodes between the RPCB and FPCB with Sn-Pb solder. The peel strength was proportionally affected by the bonding conditions, such as pressure, temperature, and time. In order to figure out an optimized bonding condition, fracture energies were calculated through F-x (force-displacement) curves in the peel test. The optimum condition for the thermo-compression bonding of electrodes between the RPCB and FPCB was found to be temperature of $225^{\circ}C$ and time of 7 s, and its peel strength was 22 N/cm.

Shear Strength and Aging Characteristics in Solder Bumps for High Reliability Optical Module (고신뢰성 광모듈을 위한 솔더 범프의 전단강도와 시효 특성)

  • 유정희
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GID-111 was investigated. Bonds were fabricated using a series of holding times(0~7.2ks) at three different temperatures. The flip chip bonding utilizing self-aligning characteristic of solder becomes mandatory to meet tolerances for the optical device. In this paper, a parametric study of aging condition and pad size of samples was evaluated. A TiW/Cu/electroplated Cu UBM structure was selected and the samples were aging treated to analyze the effect of intermetallic compounds with the time variations. An FIB technique was applied to the preparation of samples for TEM observations. An FIB technique is very useful to prepare TEM thin foil specimens from the solder joint interface. After aging treatment, the tendency to decrease in shear strength was measured and the structure of the solder and the UBM was observed by using SEM, TEM and EDS. As a result, the shear strength was decreased of about 21% in the 100${\mu}{\textrm}{m}$ sample at 17$0^{\circ}C$ aging compared with the maximum shear strength of the sample with the same pad size. In the case of the 12$0^{\circ}C$ aging treatment, 18% of decrease in shear strength was measured at the 100${\mu}{\textrm}{m}$ pad size sample. An intermetallic compound of Cu6Sn5 and Cu3Sn were also observed through the TEM measurement by using.

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging (전력반도체 접합용 천이액상확산접합 기술)

  • Lee, Jeong-Hyun;Jung, Do-hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.

A Study on Fluxless Soldering using Solder Foil (솔더 포일을 이용한 무플럭스 솔더링에 관한 연구)

  • 신영의;김경섭
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.100-107
    • /
    • 1998
  • This paper describes fluxless soldering of reflow soldering process using solder foil instead of solder pastes. There is an increasing demand for the reliable solder connection in the recent high density microelectronic components technologies. And also, it is problem fracture of an Ozone layer due to freon as which is used to removal of remained flux on the substrate. This paper discussed joining phenomena, boudability and joining processes of microelectronics devices, such as between outer lead of VLSI package and copper pad on a substrate without flux. The shear strength of joints is 8 to 13 N using Sn/Pb (63/37 wt.%) solder foil with optimum joining conditions, meanwhile, in case of using Sn/In (52/48 wt.%) solder foil, it is possible to bond with low heating temperature of 550 K, and accomplish to high bonding strength of 25N in condition heating temperature of 650K. Finally, this paper experimentally shows fluxless soldering using solder foil, and accomplishes key technology of microsoldering processes.

  • PDF

Novel Bumping Material for Solder-on-Pad Technology

  • Choi, Kwang-Seong;Chu, Sun-Woo;Lee, Jong-Jin;Sung, Ki-Jun;Bae, Hyun-Cheol;Lim, Byeong-Ok;Moon, Jong-Tae;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.637-640
    • /
    • 2011
  • A novel bumping material, which is composed of a resin and Sn3Ag0.5Cu (SAC305) solder power, has been developed for the maskless solder-on-pad technology of the fine-pitch flip-chip bonding. The functions of the resin are carrying solder powder and deoxidizing the oxide layer on the solder power for the bumping on the pad on the substrate. At the same time, it was designed to have minimal chemical reactions within the resin so that the cleaning process after the bumping on the pad can be achieved. With this material, the solder bump array was successfully formed with pitch of 150 ${\mu}m$ in one direction.

Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging (반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향)

  • Eom, Y.S.;Choi, K.S.;Choi, G.M.;Jang, K.S.;Joo, J.H.;Lee, C.M.;Moon, S.H.;Moon, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

Development of bonding processes for micro-optical and thermo-fluidic components (광/열유체 부품의 접합공정 개발)

  • 김정호;이지혜;유중돈;최두선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.137-140
    • /
    • 2002
  • The main objectives in the first year include selection of the MEMS bonding methods and feasibility study of selected methods. The ultrasonic bonding method is chosen for MEMS packaging, and the processes to provide localized heating are proposed. The ultrasonic bonding process is analyzed using a lumped model. Preliminary experiments using the eutectic solder and copper pin were performed to verify possibility to MEMS packaging. The preliminary results show possibility of the ultrasonic bonding method for MEMS packaging.

  • PDF

Laser Soldering and Inspection of the Solder Joint (레이저 솔더링과 접합부 평가)

  • 한유희;김인웅;방남주
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 1999
  • As very large scale integration technology has been developed, much more accurate, reliable technology is needed for outer lead bonding. Laser soldering has been researched as an alternative for fine pitch device bonding. This study is focused on how to select optimal laser soldering variables with which solder wets parent material, the microstructural results of laser soldering and the reliability test One of popular packages, QFP100 was soldered successfully with two kinds of solder. The inspection of the joint for reliability was carried out by optical microscope, SEM, EDAX and pull test, which demonstrated the superiority of laser soldering.

  • PDF