• Title/Summary/Keyword: Sol-gel spin coating method

Search Result 159, Processing Time 0.022 seconds

Optical Properties of All Solution processed ZnO/Ag/ZnO Multilayers (용액공정으로 제작한 ZnO/Ag/ZnO 다층구조의 광학적 특성 연구)

  • Lee, Hyungin;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.119-122
    • /
    • 2018
  • Various ZnO/Ag/ZnO multilayers were fabricated and their optical properties were investigated. Top and bottom ZnO layers were formed by sol-gel method and mid-metal layers were deposited by spin coating. To find suitable deposition condition of Ag, we measure thickness and sheet resistance of Ag monolayer. After the optimization of Ag monolayer, we fabricate ZnO/Ag/ZnO multilayers. Transmittance of ZnO/Ag/ZnO multilayers increased to 63%. In near IR region, transmittance of ZnO/Ag/ZnO multilayers decreased to 35% when the concentration of Ag solution was 2.5wt%.

Effect of the processing variables on the formation of $Pb(Sc_{1/2}Nb_{1/2})O_3$ thin layers ($Pb(Sc_{1/2}Nb_{1/2})O_3$ 박막 형성에 미치는 공정변수의 영향)

  • Park, Kyung-Bong;Kwon, Seung-Hyeop;Kim, Tae-Huei
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.70-74
    • /
    • 2009
  • Effect of the processing variables on the formation of $Pb(Sc_{1/2}Nb_{1/2})O_3$(hereafter PSN) thin layers prepared on Pt(111)/Ti/$SiO_2$/Si substrates using the sol-gel and the spin coating method has been studied. After each deposition, the coated films were heated at $370^{\circ}C$ for 5 min. Then they were finally sintered at temperature range of $600{\sim}700^{\circ}C$ by RTA(rapid thermal annealing). The final multilayered films showed a (111) preferred orientation. On a while, the layer-by-layer crystallization of multilayered amorphous thin films without the intermediate heating exhibited a (100) preferred orientation. In case of heat treatment in the tube furnace with the heating rate of $4^{\circ}C/min$, (100) and (111) oriented thin layers were formed simultaneously. The microstructure of the deposited films were dense and crack-free with thickness of 300nm, irrespective of the processing variables.

Structural and optical properties of Ni-substituted spinel $LiMn_2O_4$ thin films (니켈 치환된 스피넬 LiMn2O4 박막의 구조적, 광학적 성질)

  • Lee, Jung-Han;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.527-533
    • /
    • 2006
  • Spinel $LiNi_xMn_{2-x}O_4$ thin films were synthesized up to x = 0.9 by a sol-gel method employing spin-coating. The Ni-substituted films were found to maintain cubic structure at low x but to exhibit tetragonal structure for $x{\geq}0.6$. Such cubic-tetragonal phase transition indicates that $Ni^{3+}(d7)$ ions with low-spin $(t_{2g}^6,e_g^1)$ state occupy the octahedral sites of the compound, thus being subject to the Jahn-Teller distortion. By x-ray photoelectron spectroscopy both $Ni^{2+}$ and $Ni^{3+}$ ions were detected. Optical properties of the $LiNi_xMn_{2-x}O_4$ films were investigated by spectroscopic ellipsometry (SE) in the visible?ultraviolet range. The measured dielectric function spectra by SE mainly consist of broad absorption structures attributed to charge-transfer (CT) transitions, $O^{2-}(2p){\rightarrow}Mn^{4+}(3d)$ for 1.9 $(t_{2g})$ and $2.8{\sim}3.0$ eV $(e_g)$ structures and $O^{2-}(2p){\rightarrow}Mn^{3+}(3d)$ for 2.3 $(t_{2g})$ and $3.4{\sim}3.6$ eV $(e_g)$ structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as due to d-d crystal-field transitions within the octahedral $Mn^{3+}$ ion. The strengths of these absorption structures are reduced by the Ni substitution. Rapid reduction of the CT transition strength involving the eg states for x = 0.6 is attributed to the reduced wavefunction overlap between the $e_g$ and the $O^{2-}(2p)$ states due to the tetragonal extension of the lattice constant by the Jahn-Teller effect.

Fabrication and Electrical Properties of PZT/BFO Multilayer Thin Films

  • Jo, Seo-Hyeon;Nam, Sung-Pil;Lee, Sung-Gap;Lee, Seung-Hwan;Lee, Young-Hie;Kim, Young-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.193-196
    • /
    • 2011
  • Lead zirconate titanate (PZT)/ bismuth ferrite (BFO) multilayer thin films have been fabricated by the spin-coating method on Pt(200 nm)/Ti(10 nm)/$SiO_2$(100 nm)/p-Si(100) substrates using $BiFeO_3$ and $Pb(Zr_{0.52}Ti_{0.48})O_3$ metal alkoxide solutions. The PZT/BFO multilayer thin films show a uniform and void-free grain structure, and the grain size is smaller than that of PZT single films. The reason for this is assumed to be that the lower BFO layers play an important role as a nucleation site or seed layer for the formation of homogeneous and uniform upper PZT layers. The dielectric constant and dielectric losses decreased with increasing number of coatings, and the six-layer PZT/BFO thin film has good properties of 162 (dielectric constant) and 0.017 (dielectric losses) at 1 kHz. The remnant polarization and coercive field of three-layer PZT/BFO thin films were 13.86 ${\mu}C/cm^2$ and 37 kV/cm respectively.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Optical Property of Au-doped $TIO_2/SiO_2$ thin film (금 나노미립자가 함침된 $TiO_2/SiO_2$ 박막의 광학적 성질)

  • Jung, Mie-Won;Kim, Ji-Eun;Lee, Kyung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • The wavelength of the surface plasmon absorption depends on the dielectric matrix. $TiO_2/SiO_2$ complex oxide films doped with Au nanoclusters were prepared by sol-gel spin-coating method using $Ti(OPr^i)_4$, $Si(OEt)_4$, and $HAuCl_4{\cdot}7H_2O$. The wavelength of the maximum absorption of Au nanoehrsters in the $TiO_2/SiO_2$ thin films was obtained with lineality from 540 nm to 615 nm depending on the molar ratio of $TiO_2$. The particle sizes and structures of these nanoclusters have been identified through a TEM and X-ray diffraction patterns. The dielectric constants of $TiO_2/SiO_2$ thin films were calculated from the experimental results.

  • PDF

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Magnetic Properties of Cr-Doped Inverse Spinel Fe3O4 Thin Films (Cr 치환된 역스피넬 Fe3O4 박막의 자기적 특성)

  • Lee, Hee-Jung;Choi, Seung-Li;Lee, Jung-Han;Kim, Kwang-Joo;Choi, Dong-Hyeok;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.51-54
    • /
    • 2007
  • By substituting Cr in inverse-spinel $Fe_3O_4,\;Cr_xFe_{3-x}O_4$ thin film samples were prepared by sol-gel spin-coating method and their structural electronic, and magnetic properties were analyzed. X-ray diffraction indicates that the lattice constant decrease with increasing Cr composition (x). This result can be explained in terms of occupation of octahedral sites by $Cr^{3+}$ ions with smaller ionic radius than that of $Fe^{3+}$ Vibrating sample magnetometry measurements on the samples at room temperature revealed that saturation magnetization ($M_s$) decrease by Cr substitution, explainable by comparing spin magnetic moment among the related transition-metal ions. A decrease of magnetoresistence effect with x was observed, similar to that of $M_s$. The coercivity of the $Cr_xFe_{3-x}O_4$ films was found to increase with x, attributed to the increase of magnetic anisotropy by the existence of octahedral $Cr^{3+}(d^3)$.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.