Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.5.12

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications  

Lim, Jeong-Eun (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Park, Byeong-Jun (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Yi, Sam-Haeng (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Lee, Myung-Gyu (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Park, Joo-Seok (Business Support Division, Korea Institute of Ceramic Engineering and Technology)
Kim, Byung-Cheul (Department of Convergence Electronic Engineering, Gyeongsang National University)
Kim, Young-Gon (Department of Electronics, Chosun College of Science and Technology)
Lee, Sung-Gap (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.5, 2022 , pp. 499-503 More about this Journal
Abstract
La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.
Keywords
$(La,Sr)MnO_3$; Thermistors; Hopping conduction; Structural properties; Electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Feltz, J. Eur. Ceram. Soc., 20, 2367 (2000). [DOI: https://doi.org/10.1016/S0955-2219(00)00149-7]   DOI
2 I. B. Shim, Y. Jei, S. Ho, and S.Y. Choi, J. Korean Phys. Soc., 37, 425 (2000).
3 J. P. Zhou, J. T. McDevitt, J. S. Zhou, H. Q. Yin, J. B. Goodenough, Y. Gim, and Q. X. Jia, Appl. Phys. Lett., 75, 1146 (1999). [DOI: https://doi.org/10.1063/1.124624]   DOI
4 Y. Kang, H. Kim, and S. Yoo, Appl. Phys. Lett., 95, 052510 (2009). [DOI: https://doi.org/10.1063/1.3177192]   DOI
5 K. Park and I. H. Han, Mater. Sci. Eng. B, 119, 55 (2005). [DOI: https://doi.org/10.1016/j.mseb.2005.01.018]   DOI
6 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B, 51, 14103 (1995) [DOI: https://doi.org/10.1103/PhysRevB.51.14103]   DOI
7 L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 58, 2426 (1998). [DOI: https://doi.org/10.1103/PhysRevB.58.2426]   DOI
8 D. Varshney, I. Mansuri, N. Kaurav, W. Q. Lung, and Y. K. Kuo, J. Magn. Magn. Mater., 324, 3276 (2012) [DOI: https://doi.org/10.1016/j.jmmm.2012.05.028]   DOI
9 L. He and Z. Y. Ling, J. Appl. Phys., 110, 093708 (2011). [DOI: https://doi.org/10.1063/1.3657772]   DOI
10 E. D. Macklen, Thermistors (Electrochemical Publications Ltd. Scotland, 1979) p. 33.
11 J. G. Fagan and V.R.W. Amarakoon, American Ceramic Society Bulletin, 72, 1 (1993).
12 R. Schmit, A. Basu, A. W. Brinkman, Z. Klusek, and P. K. Datta, Appl. Phys. Lett., 86, 073501 (2005). [DOI: https://doi.org/10.1063/1.1866643]   DOI
13 B. I. Shklovskii and A. L. Efros, Electrical Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984) p. 45.
14 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994). [DOI: https://doi.org/10.1126/science.264.5157.413]   DOI
15 M. Jain, Y. Li, M. F. Hundley, M. Hawley, B. Maiorov, I. H. Campbell, L. Civale, Q. X. Jia, P. Shukla, A. K. Burrell, and T. M. McCleskey, Appl. Phys. Lett., 88, 232510 (2006). [DOI: https://doi.org/10.1063/1.2207497]   DOI
16 R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett., 71, 2331 (1993). [DOI: https://doi.org/10.1103/PhysRevLett.71.2331]   DOI
17 L. Mechin, J. M. Routoure, B. Guillet, F. Yang, S. Flament, D. Robbes, and R. A. Chakalov, Appl. Phys. Lett., 87, 204103 (2005). [DOI: https://doi.org/10.1063/1.2130383]   DOI
18 A. J. Millis, Nature, 392, 147 (1998). [DOI: https://doi.org/10.1038/32348]   DOI
19 N. Paul, S. Vadnala, A. Agrawal, S. R. Vanjari, and S. Govind Singh, Proc. 2018 IEEE Electron Devices Kolkata Conference (EDKCON) (IEEE, Kolkata, India, 2018) p. 55-59. [DOI: https://doi.org/10.1109/EDKCON.2018.8770457]   DOI