DOI QR코드

DOI QR Code

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications

서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성

  • Lim, Jeong-Eun (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Park, Byeong-Jun (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Yi, Sam-Haeng (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Lee, Myung-Gyu (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Park, Joo-Seok (Business Support Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Byung-Cheul (Department of Convergence Electronic Engineering, Gyeongsang National University) ;
  • Kim, Young-Gon (Department of Electronics, Chosun College of Science and Technology) ;
  • Lee, Sung-Gap (Research Institute for Green Convergence Technology, Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 임정은 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박병준 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이삼행 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 이명규 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소) ;
  • 박주석 (한국세라믹기술원 기업지원본부) ;
  • 김병철 (경상국립대학교 융합전자공학부) ;
  • 김영곤 (조선이공대학교 전자과) ;
  • 이성갑 (경상국립대학교 나노신소재융합공학과 그린에너지융합연구소)
  • Received : 2022.06.21
  • Accepted : 2022.07.26
  • Published : 2022.09.01

Abstract

La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03038697) and This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1I1A3052426).

References

  1. M. Jain, Y. Li, M. F. Hundley, M. Hawley, B. Maiorov, I. H. Campbell, L. Civale, Q. X. Jia, P. Shukla, A. K. Burrell, and T. M. McCleskey, Appl. Phys. Lett., 88, 232510 (2006). [DOI: https://doi.org/10.1063/1.2207497]
  2. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994). [DOI: https://doi.org/10.1126/science.264.5157.413]
  3. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett., 71, 2331 (1993). [DOI: https://doi.org/10.1103/PhysRevLett.71.2331]
  4. L. Mechin, J. M. Routoure, B. Guillet, F. Yang, S. Flament, D. Robbes, and R. A. Chakalov, Appl. Phys. Lett., 87, 204103 (2005). [DOI: https://doi.org/10.1063/1.2130383]
  5. A. Feltz, J. Eur. Ceram. Soc., 20, 2367 (2000). [DOI: https://doi.org/10.1016/S0955-2219(00)00149-7]
  6. A. J. Millis, Nature, 392, 147 (1998). [DOI: https://doi.org/10.1038/32348]
  7. N. Paul, S. Vadnala, A. Agrawal, S. R. Vanjari, and S. Govind Singh, Proc. 2018 IEEE Electron Devices Kolkata Conference (EDKCON) (IEEE, Kolkata, India, 2018) p. 55-59. [DOI: https://doi.org/10.1109/EDKCON.2018.8770457]
  8. I. B. Shim, Y. Jei, S. Ho, and S.Y. Choi, J. Korean Phys. Soc., 37, 425 (2000).
  9. J. P. Zhou, J. T. McDevitt, J. S. Zhou, H. Q. Yin, J. B. Goodenough, Y. Gim, and Q. X. Jia, Appl. Phys. Lett., 75, 1146 (1999). [DOI: https://doi.org/10.1063/1.124624]
  10. Y. Kang, H. Kim, and S. Yoo, Appl. Phys. Lett., 95, 052510 (2009). [DOI: https://doi.org/10.1063/1.3177192]
  11. K. Park and I. H. Han, Mater. Sci. Eng. B, 119, 55 (2005). [DOI: https://doi.org/10.1016/j.mseb.2005.01.018]
  12. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B, 51, 14103 (1995) [DOI: https://doi.org/10.1103/PhysRevB.51.14103]
  13. L. M. Rodriguez-Martinez and J. P. Attfield, Phys. Rev. B, 58, 2426 (1998). [DOI: https://doi.org/10.1103/PhysRevB.58.2426]
  14. D. Varshney, I. Mansuri, N. Kaurav, W. Q. Lung, and Y. K. Kuo, J. Magn. Magn. Mater., 324, 3276 (2012) [DOI: https://doi.org/10.1016/j.jmmm.2012.05.028]
  15. L. He and Z. Y. Ling, J. Appl. Phys., 110, 093708 (2011). [DOI: https://doi.org/10.1063/1.3657772]
  16. E. D. Macklen, Thermistors (Electrochemical Publications Ltd. Scotland, 1979) p. 33.
  17. J. G. Fagan and V.R.W. Amarakoon, American Ceramic Society Bulletin, 72, 1 (1993).
  18. R. Schmit, A. Basu, A. W. Brinkman, Z. Klusek, and P. K. Datta, Appl. Phys. Lett., 86, 073501 (2005). [DOI: https://doi.org/10.1063/1.1866643]
  19. B. I. Shklovskii and A. L. Efros, Electrical Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984) p. 45.