• Title/Summary/Keyword: Soil concrete

Search Result 701, Processing Time 0.033 seconds

Investigation of linear and nonlinear of behaviours of reinforced concrete cantilever retaining walls according to the earthquake loads considering soil-structures interactions

  • Gursoy, Senol;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.75-91
    • /
    • 2009
  • It is known that retaining walls were severely damaged as well in the most recent earthquakes having occurred in the countries in the active seismic belts of the world. This damage can be ascribed to the calculation methods used for the designs of retaining walls in the event of their constructions and employment having been accurately carried out. Generally simplified pseudo-static methods are used in the analysis of retaining walls with analytical methods and soil-structure interaction are not considered. In view of these circumstances, in this article by taking soil interaction into consideration, linear and nonlinear behaviours of retaining walls are analyzed with the assistance of LUSAS which is one of the structural analysis programs. This investigations are carried out per LUSAS which employs the finite element method as to the Erzincan (1992) Earthquake North-South component and the obtained findings are compared with the ones obtained from the method suggested in Eurocode-8, which is still effective today, and Mononobe-Okabe method. Not only do the obtained results indicate the distribution and magnitude of soil pressures are depend on the filling soil but on the foundation soil as well and nonlinear effects should be considered in designs of these walls.

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

The Analysis for Dynamic Behavior Characteristics of Concrete Gravity Dams (콘크리트 중력식 댐의 동적 거동 특성 분석)

  • Koo Min-Se;Park Kuk-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.393-399
    • /
    • 2005
  • The purpose of this study is to suggest some references of maintenance and design of concrete gravity dams by analyzing dynamic characteristics in x, y, z directions. It is considered as additional mass, soil interaction for numerical dynamic analysis for gravity concrete dams in Han River basin as some cases. The result shows that the overflow structure can be possibly underestimated for the evaluation of the seismic performance using seismic intensity, modified seismic intensity methods. A much more research is still necessary for the evaluation of comprehensive seismic performance of concrete gravity dam

  • PDF

Resistance on the Magnesium Sulfate Attack of Mortars with Silica Fume (실리카흄 혼합 모르타르의 황산마그네슘 저항성)

  • 문한영;이승태;유지훈;최강식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.379-384
    • /
    • 2002
  • The deterioration of concrete due to sulfate ions in various sulfate environments such as groundwater, soil and seawater is one of important factors degrading the durability of concrete structure. The aim of this paper is to evaluate on the magnesium sulfate alttack resistance of mortars with silica fume. In this study, compressive strength loss and length change of prismatic mortars, containing silica fume, immersed in 5% magnesium sulfate solution for 270 days were investigated. Additionally, paste powders with same binder were used to observe reactants of cement matrices through the instrumental analysis such as XRD, SEM and MIP. Results obtained from this study indicate that the greater damaging effects of the magnesium soulution are due to the decomposition of the C-S-H gel to M-C-S-H.

  • PDF

Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.473-498
    • /
    • 2020
  • This paper presents a careful theoretical investigation into interfacial stresses in reinforced concrete foundation beam repairing with composite plate. The essential issue in the analysis of reinforced structures with composite materials is to understand the individual behaviour of each material and its interaction with the remaining ones. The present model is based on equilibrium and deformations compatibility requirements in and all parts of the repaired RC foundation beam, i.e., the reinforced concrete foundation beam, the composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions, By comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters such as the geometric characteristics and mechanical properties of the components of the repaired beam, as well as the geotechnical stresses of the soil are considered. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-concrete hybrid structures.

Mechanical Properties and Durability of Abrasion of EVA Concrete Reinforced Steel Fiber (강섬유 보강 EVA 콘크리트의 역학적 특성 및 내마모성)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.45-54
    • /
    • 2014
  • This study was performed to evaluate compressive strength, flexural strength, static modulus of elasticity, stress-strain ratio and durability of abrasion on EVA concrete reinforced steel fiber (SF) in order to use hydraulic structures, underground utilities, offshore structures and structures being applied soil contaminated area. It is used ordinary portland cement, crushed coarse aggregate, nature fine aggregate, EVA redispersible polymer powder, superplasticizer and deforming agent to find optimum mix design of EVA concrete reinforced steel fiber. EVA concrete reinforced SF was effected on the improvement of mechanical properties and durability of abrasion.

Stress Analysis Acting on Electric Pole using Strain Gauge from Full Scale Pull-Out Test (실물인장실험시 변형률계를 이용한 전주에 작용하는 응력분석)

  • Ahn, Tae-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.49-55
    • /
    • 2010
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find stresses acting on concrete electric poles. The stresses of concrete poles are relaxed at 600~700[kg] of tensile load, and stresses are concentrated at top of pole, and spread to lower part of pole. In the concrete pole collapse test, tensile load at failure was approximately 1,400[kg], which is twice of design load. As passive zone in the soil increases, the stresses acting on concrete pole are concentrated at lower part of pole based on moment arm earth pressure distribution.

Characteristics of Red Mud-Added Soil Concrete according to Binder Amount and Water Binder Ratio (바인더량 및 물바인더비에 따른 레드머드 첨가 흙콘크리트의 특성)

  • Kim, Sang-Jin;Hong, Suk-Wo;Park, Kyu-Eun;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.81-82
    • /
    • 2023
  • As part of a study to utilize recycled aggregates in the construction industry, this paper attempted to examine recycled aggregates from waste concrete, a construction waste, and red mud, an industrial by-product, by applying them to earthen concrete packaging materials. As a result, it was found to satisfy the compressive strength standards for parking lots of SPS-KSCICO-001-2006, and its applicability in the construction industry was judged.

  • PDF

Detection of Cavities Behind Concrete Walls Using a Microphone (마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사)

  • Kang, Seonghun;Lee, Jong-Sub;Han, WooJin;Kim, Sang Yeob;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.19-28
    • /
    • 2022
  • Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

An Experimental Study of the Soil Nailed Wall Behavior with Front Plate Rigidity (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho;Park, Si-Sam;Cho, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.87-94
    • /
    • 2002
  • Recently, there have been numerous attempts to expand the traditional temporary soil nailing system into a permanent wall. Two reasons for this include the soil nailed system's advantage of efficient and economic use of subgrade space and its ability to decrease the total construction cost. However, the systematic and logical design approach has not been proposed yet. The permanent soil nailing wall system, which utilizes precast concrete from soil nailing system, is already used in many countries, but the study of cast-in-place concrete lacing or rigid walls in bottom-up construction of traditional soil nailing walls is imperfect and insufficient. In this paper, various laboratory model tests have been carried out to investigate the influence of parameters, including stiffness of the rigid wall to the soil nailing structure with respect to failure mode, displacement patterns and tensile forces at the nail head in several levels of load. Then, the variation of earth pressure distribution on the soil nailing wall, built with a rigid front plate, is sought through different levels of surcharge load and tensile forces at the nail head.