DOI QR코드

DOI QR Code

Detection of Cavities Behind Concrete Walls Using a Microphone

마이크로폰을 이용한 콘크리트 벽체 배면의 공동 탐사

  • Kang, Seonghun (Hyper-converged Forensic Research Center for Infrastructure, Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Han, WooJin (Future and Fusion Lab of Architectural, Civil and Environmental Engrg., Korea Univ.) ;
  • Kim, Sang Yeob (Future and Fusion Lab of Architectural, Civil and Environmental Engrg., Korea Univ.) ;
  • Yu, Jung-Doung (Department of Civil Engrg., JoongBu Univ. (Inno Campus))
  • 강성훈 (고려대학교 초융합건설포렌식연구센터) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 한우진 (고려대학교 미래건설환경융합연구소) ;
  • 김상엽 (고려대학교 미래건설환경융합연구소) ;
  • 유정동 (중부대학교 토목공학과)
  • Received : 2022.09.06
  • Accepted : 2022.11.23
  • Published : 2022.12.31

Abstract

Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.

벽체 배면에 발생한 공동은 벽체의 안정성에 악영향을 줄 수 있다. 본 연구의 목적은 실내 실험을 통해 콘크리트 벽체 배면에 발생한 공동을 마이크로폰을 이용하여 평가하는 방법을 개발하는 것이다. 철근이 매설된 콘크리트 판과 건조토를 이용하여 콘크리트 벽체 구조물과 배면의 흙을 모사하였으며, 속이 빈 반구형 플라스틱 통을 콘크리트 판과 건조토 사이에 설치하여 벽체 배면의 공동을 모사하였다. 누설 탄성 표면파는 해머로 콘크리트 판을 타격하여 발생시켰으며, 마이크로폰을 이용하여 측정하였다. 획득한 마이크로폰 신호의 고유주파수를 분석하여 공동이 존재하는 구역을 평가하였다. 공동이 존재하는 구역에서는 콘크리트 판의 굽힘 진동 거동에 의하여 1차 고유주파수가 감소하였다. 또한 1차 고유주파수에 해당하는 진폭은 공동에서 멀어질수록 감소하였으며, 철근에 인접한 측점에서는 더 큰 감소폭을 보였다. 본 연구는 마이크로폰이 콘크리트 벽체 배면에 발생한 공동의 위치를 평가하기 위해 유용하게 이용될 수 있음을 보여준다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통과학기술진흥원 '지하공간 활용 도시기반 복합플랜트 실증연구 사업'의 "환경기초 복합플랜트 지하공간 활용 기술(과제번호: 22UGCPB157945-03)" 과제에 의해 수행되었으며 이에 감사드립니다.

References

  1. Al Wardany, R., Ballivy, G., Gallias, J. L., Saleh, K., and Rhazi, J. (2007), "Assessment of Concrete Slab Quality and Layering by Guided and Surface Wave Testing", ACI materials journal, Vol. 104, No.3, pp.268-275. 
  2. ASTM C1740 (2016), "Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse Response Method", ASTM International, West Conshohocken, PA. 
  3. ASTM D698 (2012), "Standard Test Methods for Laboratory Compaction Characteristics of Soil", ASTM International, West Conshohocken, PA. 
  4. Ballou, G. (2013), "Handbook for Sound Engineers", Taylor & Francis, 1808. 
  5. Bies, D. A., Hansen, C., and Howard, C. (2017), "Engineering Noise Control", CRC press. 
  6. Buyukozturk, O. (1998), "Imaging of Concrete Structures", Ndt & E International, Vol.31, No.4, pp.233-243.  https://doi.org/10.1016/S0963-8695(98)00012-7
  7. Callister Jr, W. D. and Rethwisch, D. G. (2020), "Callister's Materials Science and Engineering", John Wiley & Sons, 944. 
  8. Cheng, C. C., Cheng, T. M., and Chiang, C. H. (2008), "Defect Detection of Concrete Structures Using Both Infrared Thermography and Elastic Waves", Automation in Construction, Vol.18, No.1, pp.87-92.  https://doi.org/10.1016/j.autcon.2008.05.004
  9. Cho, N. J., Cha, W., and Kim, H. K. (2016), "Non-destructive Detection of Underground Cavities Using Thermal Images", Electron. J. Geotech. Eng, Vol.21, No.16, pp.5465-5476. 
  10. Davis, AG (2003), "The Nondestructive Impulse Response Test in North America: 1985-2001", NDT E Int 2003, Vol.36, No.4, pp.185-93. 
  11. Fernandes, FM and Pais, JC. (2017), "Laboratory Observation of Cracks in Road Pavements with GPR", Construct Build Mater, Vol.154, pp.1130-8.  https://doi.org/10.1016/j.conbuildmat.2017.08.022
  12. Ganji, V., Gucunski, N., and Maher, A. (1997), "Detection of Underground Obstacles by SASW Method-Numerical Aspects", J Geotech Geoenviron, Vol.123, No.3, pp.212-219.  https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(212)
  13. Hong, W. T., Kang, S., and Lee, J. S. (2015), "Application of Ground Penetrating Radar for Estimation of Loose Layer", Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48.  https://doi.org/10.7843/KGS.2015.31.11.41
  14. Hong, W. T. and Lee, J. S. (2018), "Estimation of Ground Cavity Configurations Using Ground Penetrating Radar and Time Domain Reflectometry", Natural Hazards, Vol.92, No.3, pp.1789-1807.  https://doi.org/10.1007/s11069-018-3278-z
  15. Hong, W. T., Kang, S., Lee, S. J., and Lee, J. S. (2018), "Analyses of GPR Signals for Characterization of Ground Conditions in Urban Areas", Journal of Applied Geophysics, 152, pp.65-76.  https://doi.org/10.1016/j.jappgeo.2018.03.005
  16. Hu, Y., Xia, J., Mi, B., Cheng, F., and Shen, C. (2018), "A Pitfall of Muting and Removing Bad Traces in Surface-wave Analysis", J Appl Geophys, 153, pp.136-42.  https://doi.org/10.1016/j.jappgeo.2018.04.013
  17. Jaganathan, AP, Allouche, E., and Simicevic, N. (2010), "Numerical Modeling and Experimental Evaluation of a Time Domain UWB Technique for Soil Void Detection", Tunn Undergr Space Technol, Vol.25, No.6, pp.652-9.  https://doi.org/10.1016/j.tust.2009.08.006
  18. Kang, S., Lee, J. S., Lee, S. J., Lee, J. W., and Hong, W. T. (2017a), "Detection of Abnormal Area of Ground in Urban Area by Rectification of Ground Penetrating Radar Signal", The Journal of Engineering Geology, Vol.27, No.3, pp.217-231.  https://doi.org/10.9720/KSEG.2017.3.217
  19. Kang, S., Lee, J. S., Lee, S. J., Park, Y. K., and Hong, W. T. (2017b), "The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar", Journal of the Korean Geotechnical Society, Vol.33, No.11, pp.21-34.  https://doi.org/10.7843/KGS.2017.33.11.21
  20. Kang, S., Lee, J. S., Yu, J. D., and Kim, S. Y. (2020), "Detection of Cavities Beneath Plate Structure Using a Microphone", Journal of the Korean Society of Hazard Mitigation, Vol.20, No.6, pp. 229-237.  https://doi.org/10.9798/KOSHAM.2020.20.6.229
  21. Kang, S., Yu, J. D., Hong, W. T., and Lee, J. S. (2021), "Estimation of Cavities Beneath Plate Structures Using a Microphone: Laboratory Model Tests", Sensors, Vol.21, No.9, p.2941.  https://doi.org/10.3390/s21092941
  22. Kang, S., Yu, J. D., Han, W., and Lee, J. S. (2022), " Nondestructive Detection of Cavities Beneath Concrete Plates Using Ground Penetrating Radar and Microphone", NDT & E International, 102663. 
  23. Kee, S. H. and Gucunski, N. (2016), "Interpretation of Flexural Vibration Modes from Impact-echo Testing", Journal of Infrastructure Systems, Vol.22, No.3, pp.04016009.  https://doi.org/10.1061/(ASCE)IS.1943-555X.0000291
  24. Kim, D. G. (2019), "Drainage System for Leakage Treatment of Cement Concrete Structure in Underground", Journal of Korean Tunnelling and Underground Space Association, Vol.21, No.4, pp.573-585.  https://doi.org/10.9711/KTAJ.2019.21.4.573
  25. King, R. (2016), "Recording Orchestra and Other Classical Music Ensembles", Routledge, 268. 
  26. Larson, G. D., Alam, M., Martin, J. S., Scott Jr, W. R., McClellan, J. H., McCall II, G. S., ... and Declety, B. (2003), "Surface-wave-based Inversions of Shallow Seismic Structure", In Detection and Remediation Technologies for Mines and Minelike Targets VIII (Vol. 5089, pp. 1231-1242), International Society for Optics and Photonics. 
  27. Larson, G. D., Martin, J. S., and Scott Jr, W. R. (2007), "Investigation of Microphones as Near-ground Sensors for Seismic Detection of Buried Landmines", The Journal of the Acoustical Society of America, Vol.122, No.1, pp.253-258.  https://doi.org/10.1121/1.2743155
  28. Mori, K., Spagnoli, A., Murakami, Y., Kondo, G., and Torigoe, I. (2002), "A New Non-contacting Non-destructive Testing Method for Defect Detection in Concrete", NDT & E International, Vol.35, No.6, pp.399-406.  https://doi.org/10.1016/S0963-8695(02)00009-9
  29. Nazarian, S. and Reddy, S. (1996), "Study of Parameters Affecting Impulse Response Method", Journal of transportation engineering, Vol.122, No.4, pp.308-315.  https://doi.org/10.1061/(ASCE)0733-947X(1996)122:4(308)
  30. Obrzud, R. and Truty, A. (2012), "The Hardening Soil Model-A Practical Guidebook Z Soil PC 100701 report, revised 31.01", Z soil, 205. 
  31. Ottosen, N. S., Ristinmaa, M., and Davis, A. G. (2004), "Theoretical Interpretation of Impulse Response Tests of Embedded Concrete Structures", Journal of engineering mechanics, Vol.130, No.9, pp. 1062-1071.  https://doi.org/10.1061/(asce)0733-9399(2004)130:9(1062)
  32. Ryden, N., Lowe, M. J., Cawley, P., and Park, C. B. (2006, January), "Non-contact Surface Wave Measurements Using a Microphone", In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2006 (pp. 1110-1115), Society of Exploration Geophysicists. 
  33. Sansalone, M. J. and Streett, W. B. (1997), "Impact-echo. Nondestructive Evaluation of Concrete and Masonry", Bullbreier press, 339. 
  34. Shah, D. L. and Shroff, A. V. (2003), "Soil Mechanics and Geotechnical Engineering", CRC Press, 547. 
  35. Song, J. U., Lee, J. S., Park, M. C., Byun, Y. H., and Yu, J. D. (2018), "Laboratory Experiments for Evaluating Dynamic Response of Small-scaled Circular Steel Pipe", Journal of the Korean Geotechnical Society, Vol.34, No.11, pp.81-92.  https://doi.org/10.7843/KGS.2018.34.11.81
  36. Tong, F., Tso, S. K., and Xu, X. M. (2006), "Tile-wall Bonding Integrity Inspection based on Time-domain Features of Impact Acoustics", Sensors and actuators A: Physical, Vol.132, No.2, pp.557-566.  https://doi.org/10.1016/j.sna.2005.12.035
  37. Yang, Y., Lu, J., Li, R., Zhao, W., and Yan, D. (2020), "Small-scale Void-size Determination in Reinforced Concrete Using GPR", Adv Civ Eng; 2020. 
  38. Zhu, J. and Popovics, J. S. (2005), "Non-contact Imaging for Surface-opening Cracks in Concrete with Air-coupled Sensors. Materials and structures", Vol.38, No.9, pp.801-806.  https://doi.org/10.1007/BF02481652
  39. Zhu, J. and Popovics, J. S. (2007), "Imaging Concrete Structures Using Air-coupled Impact-echo", Journal of engineering mechanics, Vol.133, No.6, pp.628-640.  https://doi.org/10.1061/(asce)0733-9399(2007)133:6(628)
  40. Zhu, J. (2008), "Non-contact NDT of Concrete Structures Using Air Coupled Sensors", Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign.