Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.12.19

Detection of Cavities Behind Concrete Walls Using a Microphone  

Kang, Seonghun (Hyper-converged Forensic Research Center for Infrastructure, Korea Univ.)
Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
Han, WooJin (Future and Fusion Lab of Architectural, Civil and Environmental Engrg., Korea Univ.)
Kim, Sang Yeob (Future and Fusion Lab of Architectural, Civil and Environmental Engrg., Korea Univ.)
Yu, Jung-Doung (Department of Civil Engrg., JoongBu Univ. (Inno Campus))
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.12, 2022 , pp. 19-28 More about this Journal
Abstract
Cavities behind concrete walls can adversely affect the stability of structures. Thus study aims to detect cavities behind concrete structures using a microphone in a laboratory model test. A small-scale concrete wall is constructed in a chamber, which is composed of a reinforced concrete plate and dry soil. A plastic bowl is then placed between the plate and soil to simulate a cavity behind the concrete structure. Leaky surface acoustic waves are generated by impacting the concrete plate using a hammer and are measured using a microphone. The measured signals are analyzed using natural frequencies, and cavity-free sections are evaluated. The test results show that the first natural frequency decreases at the cavity section due to the flexural vibration behavior of the plate. In addition, the amplitude corresponding to the first natural frequency decreases as the measurement location becomes farther from the cavity center and significantly decreases at the measurement locations near the rebars. This study demonstrates that a microphone may be useful to detect cavities behind concrete walls.
Keywords
Cavity; Concrete wall; Leaky surface acoustic wave; Microphone; Natural frequency;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Al Wardany, R., Ballivy, G., Gallias, J. L., Saleh, K., and Rhazi, J. (2007), "Assessment of Concrete Slab Quality and Layering by Guided and Surface Wave Testing", ACI materials journal, Vol. 104, No.3, pp.268-275. 
2 ASTM C1740 (2016), "Standard Practice for Evaluating the Condition of Concrete Plates Using the Impulse Response Method", ASTM International, West Conshohocken, PA. 
3 ASTM D698 (2012), "Standard Test Methods for Laboratory Compaction Characteristics of Soil", ASTM International, West Conshohocken, PA. 
4 Ballou, G. (2013), "Handbook for Sound Engineers", Taylor & Francis, 1808. 
5 Bies, D. A., Hansen, C., and Howard, C. (2017), "Engineering Noise Control", CRC press. 
6 Buyukozturk, O. (1998), "Imaging of Concrete Structures", Ndt & E International, Vol.31, No.4, pp.233-243.    DOI
7 Callister Jr, W. D. and Rethwisch, D. G. (2020), "Callister's Materials Science and Engineering", John Wiley & Sons, 944. 
8 Cheng, C. C., Cheng, T. M., and Chiang, C. H. (2008), "Defect Detection of Concrete Structures Using Both Infrared Thermography and Elastic Waves", Automation in Construction, Vol.18, No.1, pp.87-92.    DOI
9 Cho, N. J., Cha, W., and Kim, H. K. (2016), "Non-destructive Detection of Underground Cavities Using Thermal Images", Electron. J. Geotech. Eng, Vol.21, No.16, pp.5465-5476. 
10 Davis, AG (2003), "The Nondestructive Impulse Response Test in North America: 1985-2001", NDT E Int 2003, Vol.36, No.4, pp.185-93. 
11 Fernandes, FM and Pais, JC. (2017), "Laboratory Observation of Cracks in Road Pavements with GPR", Construct Build Mater, Vol.154, pp.1130-8.    DOI
12 Ganji, V., Gucunski, N., and Maher, A. (1997), "Detection of Underground Obstacles by SASW Method-Numerical Aspects", J Geotech Geoenviron, Vol.123, No.3, pp.212-219.    DOI
13 Hong, W. T., Kang, S., and Lee, J. S. (2015), "Application of Ground Penetrating Radar for Estimation of Loose Layer", Journal of the Korean Geotechnical Society, Vol.31, No.11, pp.41-48.    DOI
14 Hong, W. T. and Lee, J. S. (2018), "Estimation of Ground Cavity Configurations Using Ground Penetrating Radar and Time Domain Reflectometry", Natural Hazards, Vol.92, No.3, pp.1789-1807.    DOI
15 Kang, S., Lee, J. S., Lee, S. J., Lee, J. W., and Hong, W. T. (2017a), "Detection of Abnormal Area of Ground in Urban Area by Rectification of Ground Penetrating Radar Signal", The Journal of Engineering Geology, Vol.27, No.3, pp.217-231.    DOI
16 Hong, W. T., Kang, S., Lee, S. J., and Lee, J. S. (2018), "Analyses of GPR Signals for Characterization of Ground Conditions in Urban Areas", Journal of Applied Geophysics, 152, pp.65-76.    DOI
17 Hu, Y., Xia, J., Mi, B., Cheng, F., and Shen, C. (2018), "A Pitfall of Muting and Removing Bad Traces in Surface-wave Analysis", J Appl Geophys, 153, pp.136-42.    DOI
18 Jaganathan, AP, Allouche, E., and Simicevic, N. (2010), "Numerical Modeling and Experimental Evaluation of a Time Domain UWB Technique for Soil Void Detection", Tunn Undergr Space Technol, Vol.25, No.6, pp.652-9.    DOI
19 Kang, S., Lee, J. S., Lee, S. J., Park, Y. K., and Hong, W. T. (2017b), "The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar", Journal of the Korean Geotechnical Society, Vol.33, No.11, pp.21-34.    DOI
20 Kang, S., Lee, J. S., Yu, J. D., and Kim, S. Y. (2020), "Detection of Cavities Beneath Plate Structure Using a Microphone", Journal of the Korean Society of Hazard Mitigation, Vol.20, No.6, pp. 229-237.    DOI
21 Kang, S., Yu, J. D., Hong, W. T., and Lee, J. S. (2021), "Estimation of Cavities Beneath Plate Structures Using a Microphone: Laboratory Model Tests", Sensors, Vol.21, No.9, p.2941.    DOI
22 Kang, S., Yu, J. D., Han, W., and Lee, J. S. (2022), " Nondestructive Detection of Cavities Beneath Concrete Plates Using Ground Penetrating Radar and Microphone", NDT & E International, 102663. 
23 Kee, S. H. and Gucunski, N. (2016), "Interpretation of Flexural Vibration Modes from Impact-echo Testing", Journal of Infrastructure Systems, Vol.22, No.3, pp.04016009.    DOI
24 Larson, G. D., Martin, J. S., and Scott Jr, W. R. (2007), "Investigation of Microphones as Near-ground Sensors for Seismic Detection of Buried Landmines", The Journal of the Acoustical Society of America, Vol.122, No.1, pp.253-258.    DOI
25 Kim, D. G. (2019), "Drainage System for Leakage Treatment of Cement Concrete Structure in Underground", Journal of Korean Tunnelling and Underground Space Association, Vol.21, No.4, pp.573-585.    DOI
26 King, R. (2016), "Recording Orchestra and Other Classical Music Ensembles", Routledge, 268. 
27 Larson, G. D., Alam, M., Martin, J. S., Scott Jr, W. R., McClellan, J. H., McCall II, G. S., ... and Declety, B. (2003), "Surface-wave-based Inversions of Shallow Seismic Structure", In Detection and Remediation Technologies for Mines and Minelike Targets VIII (Vol. 5089, pp. 1231-1242), International Society for Optics and Photonics. 
28 Mori, K., Spagnoli, A., Murakami, Y., Kondo, G., and Torigoe, I. (2002), "A New Non-contacting Non-destructive Testing Method for Defect Detection in Concrete", NDT & E International, Vol.35, No.6, pp.399-406.    DOI
29 Nazarian, S. and Reddy, S. (1996), "Study of Parameters Affecting Impulse Response Method", Journal of transportation engineering, Vol.122, No.4, pp.308-315.    DOI
30 Obrzud, R. and Truty, A. (2012), "The Hardening Soil Model-A Practical Guidebook Z Soil PC 100701 report, revised 31.01", Z soil, 205. 
31 Ottosen, N. S., Ristinmaa, M., and Davis, A. G. (2004), "Theoretical Interpretation of Impulse Response Tests of Embedded Concrete Structures", Journal of engineering mechanics, Vol.130, No.9, pp. 1062-1071.    DOI
32 Ryden, N., Lowe, M. J., Cawley, P., and Park, C. B. (2006, January), "Non-contact Surface Wave Measurements Using a Microphone", In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2006 (pp. 1110-1115), Society of Exploration Geophysicists. 
33 Tong, F., Tso, S. K., and Xu, X. M. (2006), "Tile-wall Bonding Integrity Inspection based on Time-domain Features of Impact Acoustics", Sensors and actuators A: Physical, Vol.132, No.2, pp.557-566.    DOI
34 Sansalone, M. J. and Streett, W. B. (1997), "Impact-echo. Nondestructive Evaluation of Concrete and Masonry", Bullbreier press, 339. 
35 Shah, D. L. and Shroff, A. V. (2003), "Soil Mechanics and Geotechnical Engineering", CRC Press, 547. 
36 Song, J. U., Lee, J. S., Park, M. C., Byun, Y. H., and Yu, J. D. (2018), "Laboratory Experiments for Evaluating Dynamic Response of Small-scaled Circular Steel Pipe", Journal of the Korean Geotechnical Society, Vol.34, No.11, pp.81-92.    DOI
37 Yang, Y., Lu, J., Li, R., Zhao, W., and Yan, D. (2020), "Small-scale Void-size Determination in Reinforced Concrete Using GPR", Adv Civ Eng; 2020. 
38 Zhu, J. and Popovics, J. S. (2005), "Non-contact Imaging for Surface-opening Cracks in Concrete with Air-coupled Sensors. Materials and structures", Vol.38, No.9, pp.801-806.    DOI
39 Zhu, J. and Popovics, J. S. (2007), "Imaging Concrete Structures Using Air-coupled Impact-echo", Journal of engineering mechanics, Vol.133, No.6, pp.628-640.    DOI
40 Zhu, J. (2008), "Non-contact NDT of Concrete Structures Using Air Coupled Sensors", Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign.