• Title/Summary/Keyword: Sodium hydroxide(NaOH)

Search Result 228, Processing Time 0.025 seconds

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Chemical cleaning of fouled polyethersulphone membranes during ultrafiltration of palm oil mill effluent

  • Said, Muhammad;Mohammad, Abdul Wahab;Nor, Mohd Tusirin Mohd;Abdullah, Siti Rozaimah Sheikh;Hasan, Hassimi Abu
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.207-219
    • /
    • 2014
  • Fouling is one of the critical factors associated with the application of membrane technology in treating palm oil mill effluent (POME), due to the presence of high concentration of solid organic matter, oil, and grease. In order to overcome this, chemical cleaning is needed to enhance the effectiveness of membranes for filtration. The potential use of sodium hydroxide (NaOH), sodium chloride (NaCl), hydrochloric acid (HCl), ethylenediaminetetraacetic acid (EDTA), and ultrapure water (UPW) as cleaning agents have been investigated in this study. It was found that sodium hydroxide is the most powerful cleaning agent, the optimum conditions that apply are as follows: 3% for the concentration of NaOH, $45^{\circ}C$ for temperature solution, 5 bar operating pressure, and solution pH 11.64. Overall, flux recovery reached 99.5%. SEM images demonstrated that the membrane surface after cleaning demonstrated similar performance to fresh membranes. This is indicative of the fact that NaOH solution is capable of removing almost all of the foulants from PES membranes.

Electrochemical Desalination of a 50% w/w Sodium Hydroxide Solution, a Pharmaceutical Sterilization Agent

  • Jaehong Lee;Ji-hyun Yang;Eugene Huh;Sewon Park;Bonmoo Koo;Ik-Sung Ahn
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2023
  • Sodium hydroxide solutions are often employed as sterilization agents in the pharmaceutical industry. Here, the chloride content is considered as a critical impurity. In this study, an electrochemical method was developed to remove chloride ions (Cl-) through the oxidative deposition of AgCl on a Ag anode. The Cl- content in the commercially available 50% w/w NaOH solution employed was approximately 100 mg Cl-/kg NaOH. As the OH- content is approximately 18,000 times higher than the Cl- content, the formation of AgCl may be expected to be thermodynamically less favorable than the formation of Ag2O. However, activation energies for AgCl and Ag2O formation have been reported to be approximately 3.8 and 31.2 kJ/mol, respectively, and indicate that AgCl formation is favored. AgCl can be selectively produced by controlling the anode potential. Here, the Cl- concentration was reduced to less than 50 mg Cl-/kg NaOH when an anode potential of 0.18 or 0.19 V vs. Hg/HgO (reference electrode) was applied for one hour at 50℃. XRD analysis and visual monitoring of the Ag anode confirmed the oxidative deposition of AgCl on the anode surface as well as the electrochemical desalination of the concentrated NaOH solution.

Fundamental Study on Compressive Strength Recovery for Excessive High-volume Blast Furnace Slag Mortar (고로슬래그가 다량치환된 모르타르의 알칼리 처리에 의한 압축강도 회복 가능성 분석)

  • Choi, Yoon-Ho;Sin, Se-Jun;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.103-104
    • /
    • 2019
  • The aim of the research is assessing the possibility of recovering the compressive strength of the mortar mixture replaced excessively high volume of blast furnace slag accidently. As a result of the experiment, in the case of compressive strength, painting sodium oxide showed higher compressive strength recovery effect than painting calcium oxide. As a curing temperature, 20℃ showed advanced result rather than 65℃. From the wet curing, the reaction was confirmed, deeper penetration depth was checked at 20℃ than 60℃ temperature. Therefore for the concrete mixture with excessively high volume of blast furnace slag, it is considered that painting sodium hydroxide and curing 20℃ can recover the compressive strength effectively.

  • PDF

Precipitation-Filtering Method for Reuse of Uranium Electrokinetic Leachate (우라늄 오염 동전기 침출액의 재이용을 위한 침전-여과 방법)

  • Kim, Gye-Nam;Shon, Dong-Bin;Park, Hye-Min;Kim, Ki-Hong;Lee, Ki-Won;Moon, Jeik-kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • A large volume of uranium electrokinetic leachate has been generated during the electrokinetic decontamination to remove uranium from contaminated soil. The treatment technology for the reuse of the uranium leachate was developed. The concentration of uranium in the generated uranium leachate was 180 ppm and concentrations of Mg(II), K(I), Fe(II), and Al(III) ions ranged from 20 ppm to 1,210 ppm. The treatment process for uranium leachate consisted mainly of mixing and cohesion, precipitation, concentration, and filtration. In order to obtain the pH=11 of a precipitate solution, the calcium hydroxide needs to be 3.0g/100ml and the sodium hydroxide needed to be 2.7g/100ml. The results of several precipitation experiments showed that a mixture of NaOH+0.2g alum+0.15g magnetite was an optimal precipitant for filtration. The average particle size of precipitate with NaOH+alum+0.15g magnetite was $600\;{\mu}m$. Because the total value of metal concentrations in supernatant at pH=9 was the smallest, sodium hydroxide should be added with 0.2g alum and 0.15g magnetite for pH=9 of leachate.

Manufacturing of Copper(II) Oxide Powder for Electroplating from NaClO3 Type Etching Wastes

  • Hong, In Kwon;Lee, Seung Bum;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • In this study, copper (II) oxide powder for electroplating was prepared by recovering CuCl2 from NaClO3 type etching wastes via recovered non-sintering two step chemical reaction. In case of alkali copper carbonate [mCuCo3·nCu(OH)2], first reaction product, CuCo3 is produced more than Cu(OH)2 when the reaction molar ratio of sodium carbonate is low, since m is larger than n. As the reaction molar ratio of sodium carbonate increased, m is larger than n and Cu(OH)2 was produced more than CuCO3. In the case of m has same values as n, the optimum reaction mole ratio was 1.44 at the reaction temperature of 80℃ based on the theoretical copper content of 57.5 wt. %. The optimum amount of sodium hydroxide was 120 g at 80℃ for production of copper (II) oxide prepared by using basic copper carbonate product of first reaction. At this time, the yield of copper (II) oxide was 96.6 wt.%. Also, the chloride ion concentration was 9.7 mg/L. The properties of produced copper (II) oxide such as mean particle size, dissolution time for sulfuric acid, and repose angle were 19.5 mm, 64 second, and 34.8°, respectively. As a result of the hole filling test, it was found that the copper oxide (II) prepared with 120 g of sodium hydroxide, the optimum amount of basic hydroxide for copper carbonate, has a hole filling of 11.0 mm, which satisfies the general hole filling management range of 15 mm or less.

Comparision of Ca- and Na- Based Dry Sorbent in Desulfurization Characteristics (Ca계 및 Na계 흡수제의 건식 탈황 특성 비교)

  • Moon, Seung-Hyun;Hyun, Ju-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Physico-chemical characteristics of the Ca-based and Na-based dry sorbents were compared using thermo-gravimetric analysis (TGA) and temperature programmed desorption (TPD) methods. The studied characteristics were thermal stability, sulfur dioxide ($SO_2$) absorption capacity and absorption rate at $250^{\circ}C$ which is a typical temperature before a fabric filter, and $SO_2$ absorption capacity at an ambient temperature. Calcium hydroxide ($Ca(OH)_2$) started to decompose into calcium oxide (CaO) at $390^{\circ}C$ and completed at 480~$500^{\circ}C$, showing 76% of an original $Ca(OH)_2$ weight. Sodium bicarbonate ($NaHCO_3$) also converted to sodium carbonate ($Na_2CO_3$) between $95^{\circ}C$ and $190^{\circ}C$, decreasing the weight to 63% of its initial weight. Among four sorbents tested at $250^{\circ}C$, sodium carbonate had the highest capacity, absorbing 0.35 g $SO_2$/g sorbent. Calcium oxide and calcium hydroxide followed that showing 0.156 g and 0.065 g $SO_2$ absorption per absorbent respectively. Ca-based absorbents showed slower rate than sodium carbonate because of initial stagnant step. However, calcium hydroxide caught more $SO_2$ than sodium carbonate at ambient temperature. From this work, it can be concluded that Ca-based absorbent is a proper sorbent for $SO_2$ treatment at low temperature and sodium carbonate, at high temperature.

Removal of Sodium Contained in Al(OH)3 Synthesized by Bayer Process (베이어법으로 합성된 Al(OH)3에 함유된 미량 Na 성분의 제거)

  • Choi, Hee-Young;Kim, Do-Hyeong;Park, No-Kuk;Lee, Tae-Jin;Kang, Mi-Sook;Lee, Won-Gun;Kim, Heun-Duk;Park, Jun-Woo
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2012
  • In this study, aluminum hydroxide ($Al(OH)_3$) was synthesized by Bayer process and sodium contained in $Al(OH)_3$ was removed with the acid solution such as HCl and acetic acid for the synthesis of high purity alumina. The bauxite produced in Queensland of Australia was used for the production of alumina by Bayer, and was crushed to a particle size of below 10 um by attrition mill. The crushed bauxite was treated in sodium hydroxide solution of 5 N for the elution of aluminum component. The elution of aluminum from bauxite was carried out at $140^{\circ}C$ and 3.4 atm in autoclave. The sample solution was separated to the red mud and liquid solution by filter paper. The elution of aluminum from bauxite was confirmed with changing a structure and aluminum content in both bauxite and red mud analyzed by XRD and EDX. Aluminum contained in the separated solution was crystallized to $Al(OH)_3$ with the addition of aluminum hydroxide used as the seed material. $Al(OH)_3$ powder obtained during the crystallization process was purified by several times washing with distillated water. It was also confirmed that the sodium remained in $Al(OH)_3$ powder is removed with acid solution. The purity of $Al(OH)_3$ powder produced in this study was 99.3% and the content of sodium was reduced to approximately 0.009% after the acid treatment.

The Decomposition of Carbon-dioxide Using the Oxygen Deficient Magnetite (산소 결함 Magnetite를 이용한 이산화탄소의 분해)

  • 김승호;박영구;이승훈
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.68-74
    • /
    • 1995
  • The optimum conditions was synthesized for the formation of Magnetite ($Fe_3O_4$) by air bubbling with the suspensions obtained by mixing Ferrous sulfate ($FeSO_4\cdot 7H_2O$) and Sodium Hydroxide (NaOH) solution in various values equivalent ratio($R=2NaOH/FeSO_4$) were studied. The changes of the structure were measured with XRD, $EM and BET. Equivalent ratio R: 0.65 was synthesized Goethite ($\alpha$-FeOOH), which becomes Maghemite ($\gamma=Fe_2O_3$) by dehydration, reduction and oxidation process. At the equivalent ratio over 1 (R>1), Magnetite ($Fe_3O_4$) was synthesized directly. The oxygen-deficient Magnetite ($Fe_3O_{4-\delta}$), which is obtained by flowing $H_2$ gas(100 ml/min) through the synthesis Magnetite at 350$\circ$C for 4 hr. By using it, was researched the decomposition reaction of $CO_2$. $CO_2$ was decomposed nearly 100% in 45 minutes by the oxygen-deficient Magnetite.

  • PDF

Influences of Several Chemicals on the Solubility of Cocoon Sericin in Water (제사용수(製絲用水)에 대(對)한 몇가지 화학약제(化學藥劑)의 처리(處理)가 견층(繭層) Sericin의 용해성(溶解性)에 미치는 영향(影響))

  • Rhee, In Jeon;Lee, Dong Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.55-65
    • /
    • 1983
  • The purpose of this study is to find out influences of several chemicals on the solubility of cocoon sericin in water, and there are several results of use to control the solubility of cocoon sericin in water. The results obtained are summarized as follows : The chemical which shows the strongest accelerating power of the solubility of cocoon sericin in water is Sodium Hydroxide (NaOH), the second is Potassium Hydroxide (KOH), the third is Sodium Silicate ($Na_2SiO_3$), and the weakest is Sodium Bicarbonate ($NaHCO_3$) in order among noticed silk-reeling accelerators. The chemical which shows the strongest inhibiting power of the solubility of cocoon sericin in water is Form Aldehyde (HCHO), the second is Ammonium Alum ($Al_2(SO_4)_2{\cdot}(NH_4)_2SO_4{\cdot}24H_2O$), the third is Acetic Acid ($CH_3COOH$), the weakest is Hydrochloric Acid(HCl) in order among noticed silk-reeling inhibitors. Particulary Hydrochloric Acid (HCl), which is expected to show strong inhibiting power of the solubility of cocoon sericin in water, shows accelerating power of the solubility of cocoon sericin at high temperature over 80 degrees of Celsius thermometer in water.

  • PDF