Comparision of Ca- and Na- Based Dry Sorbent in Desulfurization Characteristics

Ca계 및 Na계 흡수제의 건식 탈황 특성 비교

  • Moon, Seung-Hyun (Waste Energy Research Center, Korea Institute of Energy Research) ;
  • Hyun, Ju-Soo (Waste Energy Research Center, Korea Institute of Energy Research)
  • 문승현 (한국에너지기술연구원 폐기물에너지연구센터) ;
  • 현주수 (한국에너지기술연구원 폐기물에너지연구센터)
  • Received : 2008.09.09
  • Accepted : 2009.01.02
  • Published : 2009.01.31

Abstract

Physico-chemical characteristics of the Ca-based and Na-based dry sorbents were compared using thermo-gravimetric analysis (TGA) and temperature programmed desorption (TPD) methods. The studied characteristics were thermal stability, sulfur dioxide ($SO_2$) absorption capacity and absorption rate at $250^{\circ}C$ which is a typical temperature before a fabric filter, and $SO_2$ absorption capacity at an ambient temperature. Calcium hydroxide ($Ca(OH)_2$) started to decompose into calcium oxide (CaO) at $390^{\circ}C$ and completed at 480~$500^{\circ}C$, showing 76% of an original $Ca(OH)_2$ weight. Sodium bicarbonate ($NaHCO_3$) also converted to sodium carbonate ($Na_2CO_3$) between $95^{\circ}C$ and $190^{\circ}C$, decreasing the weight to 63% of its initial weight. Among four sorbents tested at $250^{\circ}C$, sodium carbonate had the highest capacity, absorbing 0.35 g $SO_2$/g sorbent. Calcium oxide and calcium hydroxide followed that showing 0.156 g and 0.065 g $SO_2$ absorption per absorbent respectively. Ca-based absorbents showed slower rate than sodium carbonate because of initial stagnant step. However, calcium hydroxide caught more $SO_2$ than sodium carbonate at ambient temperature. From this work, it can be concluded that Ca-based absorbent is a proper sorbent for $SO_2$ treatment at low temperature and sodium carbonate, at high temperature.

Ca계 및 Na계 탈황제를 대상으로 열중량 분석실험과 승온탈리 실험을 수행하여 탈황제의 열적안정성, 집진기 전단 온도인 $250^{\circ}C$에서 탈황 성능, 그리고 상온에서 흡수용량 등을 비교하여 아래와 같은 결론을 도출하였다. 소석회($Ca(OH)_2$)는 약 $390^{\circ}C$에서 열 분해되기 시작하여 480~$500^{\circ}C$에 이르면 완전하게 분해되었다. 열분해 결과 생성된 생석회(CaO)의 무게는 최초 소석회 무게의 76%로 감소하였다. 중탄산나트륨($NaHCO_3$)은 약 $95^{\circ}C$에서부터 분해되기 시작하여 $190^{\circ}C$ 이하의 온도에서 완전하게 분해되어 처음 도입된 중탄산나트륨 무게와 비교하여 약 63%로 감소하였다. $250^{\circ}C$에서 실시한 열중량 분석 결과, 무수탄산나트륨($Na_2CO_3$)의 경우에는 탈황제 무게의 35%에 해당하는 $SO_2$를 흡수할 수 있고, 생석회는 15.6%, 소석회는 6.5%까지 $SO_2$를 흡수할 수 있는 것으로 나타났다. $250^{\circ}C$에서 초기반응 속도를 비교하면, Ca계 탈황제의 경우에는 초기 미반응 시간이 있는 반면에 Na계 탈황제인 무수탄산나트륨에서는 이러한 초기 미반응 시간이 없어, Ca계 반응제의 경우보다 Na계 탈황제의 경우에 $SO_2$와 더 빠른 반응이 진행되었다. 상온에서 실시한 승온탈리 실험 결과, Na계인 무수탄산나트륨보다는 Ca계인 소석회가 더 많은 $SO_2$를 흡수하였다. 따라서 저온에서는 Ca계인 소석회가 적절하고 고온에서는 무수탄산나트륨이 더 적절한 탈황제인 것으로 판단된다.

Keywords

References

  1. 최익수, 이인철, 진경태, 문승현, '질소산화물저감대책연구,' 한국에너지기술연구원보고서 KRC-85C-JO1(1985)
  2. Garea, A., Herrera, J. L., Marques, J. A., Irabien, A., 'Kinetics of dry flue gas desulfurization at low temperatures using $Ca(OH)_2$: competitive reactions of sulfation and carbonation,' Chem. Eng. Sci., 56, 1387-1393 (2001) https://doi.org/10.1016/S0009-2509(00)00362-6
  3. Gavalas, G. R., Edelstein, S., Stephanopoulps, M. F., and Weston, T. A., 'Alkali-alumina sorbents for hightemperature removal of $SO_2$,' AIChE, 33(2), 258-266 (1987) https://doi.org/10.1002/aic.690330212
  4. Ponitzsch, L., Wilde, M., Tetenyi, P., Dobrovolszky, M., and Paal, A., 'Sulphur adsorption, desorption, exchange on platinum/alumina, rhenium/alumina, platinum-rhenium/alumina catalysts,' Elsevier Science Publishers, 86, 115-125(1992) https://doi.org/10.1016/0926-860X(92)85142-X
  5. Freund, H. and Lyon, R., 'The sulfur retention of calcium- containing coal during fuel - rich combustion,' Combustion Flame, 45, 191(1982) https://doi.org/10.1016/0010-2180(82)90044-X
  6. Takarada, T., Mao, K., Hashimoto, Y., Nakagawa, N., and Kato, K. JSME-ASME International Conference on Power Engineering, 97(1993)
  7. Sharma, P. K., Gavalas, G. R., and Flagan, R. C., 'Calcium pretreatment of coal for sulphur emission control in combustion,' Fuel, 66, 207(1987) https://doi.org/10.1016/0016-2361(87)90242-0
  8. Martinez, J. G., Lopez, A. B., Garcia, A. G., and Solano, A. Linares, '$SO_2$retention at low temperatures by $Ca(OH)_2$-derived CaO : a model for CaO regeneration,' Fuel, 81, 305-313(2002) https://doi.org/10.1016/S0016-2361(01)00141-7
  9. Bland, V. V., 'Evaluation of dry sodium utilization in combustion gas SOx/NOx reduction,' GS-6850, Electric Power Research Institute(1990)
  10. Erdos, E. et al, 'Application of the active soda process for removing sulfur dioxide from flue gases,' JAPCA, 39, 1206-1209(1989) https://doi.org/10.1080/08940630.1989.10466613
  11. Keener, T. C. and Khang, S. J, 'Kinetics of the sodium bicarbonate-sulfur dioxide reaction,' Chem. Eng. Sci., 48(16), 2859-2865(1993) https://doi.org/10.1016/0009-2509(93)80032-L
  12. Church and Dwight, 'Sodium bicarbonate (Manufacturer's Brochure),' Church and Dwight Co., Inc., New York
  13. Sotirchos, V. S. and Yu, H. C., 'Mathematical modeling of gas-solid reactions with solid product,' Chem. Eng. Sci., 40, 2039-2052(1985) https://doi.org/10.1016/0009-2509(85)87021-4
  14. Marsh, D. W. and Ulrichson, D. L., 'Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide,' Chem. Eng. Sci., 40(3), 423-433(1985) https://doi.org/10.1016/0009-2509(85)85104-6
  15. Keener, T. C., 'Thermal decomposition of sodium bicarbonate and its effect on the reaction of sodium bicarbonate and sulfur dioxide in a simulated flue gas,' Ph.D. dissertation, The university of Tennessee(1982)