DOI QR코드

DOI QR Code

Electrochemical Desalination of a 50% w/w Sodium Hydroxide Solution, a Pharmaceutical Sterilization Agent

  • Jaehong Lee (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ji-hyun Yang (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Eugene Huh (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Sewon Park (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Bonmoo Koo (BiOCS Co., Ltd.) ;
  • Ik-Sung Ahn (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2022.06.14
  • Accepted : 2022.09.14
  • Published : 2023.02.28

Abstract

Sodium hydroxide solutions are often employed as sterilization agents in the pharmaceutical industry. Here, the chloride content is considered as a critical impurity. In this study, an electrochemical method was developed to remove chloride ions (Cl-) through the oxidative deposition of AgCl on a Ag anode. The Cl- content in the commercially available 50% w/w NaOH solution employed was approximately 100 mg Cl-/kg NaOH. As the OH- content is approximately 18,000 times higher than the Cl- content, the formation of AgCl may be expected to be thermodynamically less favorable than the formation of Ag2O. However, activation energies for AgCl and Ag2O formation have been reported to be approximately 3.8 and 31.2 kJ/mol, respectively, and indicate that AgCl formation is favored. AgCl can be selectively produced by controlling the anode potential. Here, the Cl- concentration was reduced to less than 50 mg Cl-/kg NaOH when an anode potential of 0.18 or 0.19 V vs. Hg/HgO (reference electrode) was applied for one hour at 50℃. XRD analysis and visual monitoring of the Ag anode confirmed the oxidative deposition of AgCl on the anode surface as well as the electrochemical desalination of the concentrated NaOH solution.

Keywords

Acknowledgement

This work was supported by Bio Industrial Technology Development Program (20009668, Development of Sodium Hydroxide (NaOH) Purification Technology for Biomedicine Production) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). We appreciate Dr. Han Sung Kim in the department of Chemical and Biomolecular Engineering of Yonsei University for the advice in experimental designs and data analysis.

References

  1. W. A. Rutala and D. J. Weber, Infect. Control. Hosp. Epidemiol., 2010, 31(2), 107-117. 
  2. British Pharmacopoeia Commission, British Pharmacopoeia 2020, The Stationery Office, UK, 2019, II-921. 
  3. European Pharmacopoeia Commission, European Pharmacopoeia 7.0, Strasbourg: Council of Europe, Council of Europe, 2012, 2930. 
  4. T. Brinkmann, G. G. Santonja, F. Schorcht, S. Roudier, and L. D. Sancho, Best available techniques (BAT) reference document for the production of chlor-alkali: Industrial emissions directive 2010/75/EU (integrated pollution prevention and control), Publications Office, 2014, 49-50. 
  5. A. Wolde-Kidan and R. R. Netz, Langmuir, 2021, 37(28), 8463-8473.  https://doi.org/10.1021/acs.langmuir.1c00868
  6. Y. Song and Z. Zhao, Sep. Purif. Technol., 2018, 206, 335-342.  https://doi.org/10.1016/j.seppur.2018.06.022
  7. U. R. Dotel, E. Dirdal, M. O. Sydnes, I. W. Jolma, H. Urkedal, and T. Hemmingsen, Int. J. Energy Environ. Eng., 2018, 9(2), 129-136. 
  8. D. Montes, J. Henao, E. A. Taborda, J. Gallego, F. B. Cortes, and C. A. Franco, ACS Omega, 2020, 5(10), 5085-5097. https://doi.org/10.1021/acsomega.9b04041
  9. A. Grandjean, M. Malki, C. Simonnet, D. Manara, and B. Penelon, Phys. Rev. B, 2007, 75, 054112. 
  10. G. L. Ma, H. B. Dai, D. W. Zhuang, H. J. Xia, and P. Wang, Int. J. Hydrog. Energy, 2012, 37(7), 5811-5816.  https://doi.org/10.1016/j.ijhydene.2011.12.157
  11. M. Mouanga, P. Bercot, and J. Y. Rauch, Corros. Sci., 2010, 52(12), 3984-3992.  https://doi.org/10.1016/j.corsci.2010.08.003
  12. A. Semisch, J. Ohle, B. Witt, and A. Hartwig, Part. Fibre. Toxicol., 2014, 11, 10. 
  13. W. M. Haynes, CRC Handbook of Chemistry and Physics, 92nd Ed., CRC Press, Boca Raton, FL, 2011, 4.61. 
  14. F. Brescia, Fundamentals of Chemistry: A Modern Introduction, Academic Press, New York, 1966, 528- 528. 
  15. H. H. Hassan, M. A. M. Ibrahim, S. S. Abd El Rehim, and M. A. Amin, Int. J. Electrochem. Sci., 2010, 5, 278- 294.  https://doi.org/10.1016/S1452-3981(23)15284-9
  16. V. S. Kublanovsky and O. L. Bersirova, Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties, 2017, 01PCSI21. 
  17. G. Tsaparlis, Isr. J. Chem., 2019, 59(6-7), 478-492.  https://doi.org/10.1002/ijch.201800071
  18. V. S. Kublanovsky, O. L. Bersirova, and S. V. Byk, Anodic behavior of silver in dicyanoargentate electrolytes, Curr. Top. Electrochem., 2014, 18, 73-84. 
  19. P. A. Maggard, Acc. Chem. Res., 2021, 54(16), 3160-3171.  https://doi.org/10.1021/acs.accounts.1c00210
  20. O. A. Levitskiy, Y. K. Grishin, and T. V. Magdesieva, Eur. J. Org. Chem., 2019, 2019(20), 3174-3182.  https://doi.org/10.1002/ejoc.201900466
  21. B. Pierozynski, T. Mikolajczyk, and I. M. Kowalski, J. Power Sources, 2014, 271, 231-238.  https://doi.org/10.1016/j.jpowsour.2014.07.188
  22. A. Bo, S. Sarina, Z. Zheng, D. Yang, H. Liu, and H. Zhu, J. Hazard. Mater., 2013, 246-247, 199-205.  https://doi.org/10.1016/j.jhazmat.2012.12.008
  23. T. Kakiuchi, T. Yoshimatsu, and N. Nishi, Anal. Chem., 2007, 79(18), 7187-7191.  https://doi.org/10.1021/ac070820v
  24. H. Y. Dai, H. M. Yang, X. Jian, X. Liu, and Z. H. Liang, Acta Metall. Sin-Engl., 2017, 30(12), 1243-1428.  https://doi.org/10.1007/s40195-017-0616-1
  25. S. V. Petrenko and K. S. Pitzer, J. Phys. Chem. B, 1997, 101(18), 3589-3595.  https://doi.org/10.1021/jp963707+
  26. R. A. Nickell, W. H. Zhu, R. U. Payne, D. R. Cahela, and B. J. Tatarchu, J. Power Sources, 2006, 161(2), 1217-1224.  https://doi.org/10.1016/j.jpowsour.2006.05.028
  27. K. J. Laidler, J. Chem. Educ., 1984, 61(6), 494-498.  https://doi.org/10.1021/ed061p494
  28. F. Heidarpour, W. A. Wan Ab Karim Ghani, A. Fakhru'l-Razi, S. Sobri, V. Heydarpour, M. Zargar, and M. R. Mozafari, Clean Technol. Environ. Policy, 2011, 13(3), 499-507.  https://doi.org/10.1007/s10098-010-0332-2
  29. J. Wang, C. An, M. Zhang, C. Qin, X. Ming, and Q. Zhang, Can. J. Chem., 2012, 90(10), 858-864.  https://doi.org/10.1139/v2012-079
  30. S. Akel, R. Dillert, N. O. Balayeva, R. Boughaled, J. Koch, M. E. Azzouzi, and D. W. Bahnemann, Catalysts, 2018, 8(12), 647.