• Title/Summary/Keyword: SoC FPGA

Search Result 157, Processing Time 0.022 seconds

An Implementation of SoC FPGA-based Real-time Object Recognition and Tracking System (SoC FPGA 기반 실시간 객체 인식 및 추적 시스템 구현)

  • Kim, Dong-Jin;Ju, Yeon-Jeong;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.363-372
    • /
    • 2015
  • Recent some SoC FPGA Releases that integrate ARM processor and FPGA fabric show better performance compared to the ASIC SoC used in typical embedded image processing system. In this study, using the above advantages, we implement a SoC FPGA-based Real-Time Object Recognition and Tracking System. In our system, the video input and output, image preprocessing process, and background subtraction processing were implemented in FPGA logics. And the object recognition and tracking processes were implemented in ARM processor-based programs. Our system provides the processing performance of 5.3 fps for the SVGA video input. This is about 79 times faster processing power than software approach based on the Nios II Soft-core processor, and about 4 times faster than approach based the HPS processor. Consequently, if the object recognition and tracking system takes a design structure combined with the FPGA logic and HPS processor-based processes of recent SoC FPGA Releases, then the real-time processing is possible because the processing speed is improved than the system that be handled only by the software approach.

Implementation of FPGA-based SoC Design Verification System for a Soundbar with Embedded Processor (사운드바(Soundbar)를 위한 프로세서 내장 SoC 설계 검증을 위한 FPGA 시스템의 구현)

  • Kim, Sung-Woo;Lee, Seon-Hee;Choi, Seong-Jhin
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.792-802
    • /
    • 2016
  • Real time verification is necessary, since there are several features that cannot be verified through design simulation in the design of multiband soundbar system. And then this paper describes an implementation of an FPGA-based real-time verification system for a soundbar SoC with an embedded processor. It is verified a real-time performance test and a listening test which are several features in the design stage that cannot be verified through a design simulation. The measurement of quantitative specifications such as SNR, THD+N, frequency response, etc. as well as the listening test were performed through the implemented FPGA system, and it was verified that test results satisfied the target specifications.

FGPA Design and SoC Implementation for Wireless PAN Applications (무선 PAN 응용을 위한 FPGA 설계 및 SoC)

  • Kim, Young-Sung;Kim, Sun-Hee;Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.462-469
    • /
    • 2008
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the KOINONIA WPAN (Wireless Personal Area Network), and implement the SoC (System on Chip). We use the redundant bits to make a constant-amplitude in a modulator part. Additionally, the SNR (Signal to Noise Ratio) performance of the demodulator is improved by using the redundant bits in decoding steps. The four-million FPGA of the KOINONIA WPAN can be operated at 44MHz frequency. The PER (Packet Error Rate) of the designed FPGA with RF (Radio Frequency) module is below 1% at the -86dB MIPLS (Minimum Input Power Level Sensitivity), and the SNR is about 13dB. The SoC is implemented by using Hynix 0.25um CMOS (Complementary Metal Oxide Semiconductor) process. The size of the SoC is $6.52mm{\times}6.92mm$.

Hardware Implementation of Motor Controller Based on Zynq EPP(Extensible Processing Platform) (Zynq EPP를 이용한 모터 제어기의 하드웨어 구현)

  • Moon, Yong-Seon;Lim, Seung-Woo;Lee, Young-Pil;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1707-1712
    • /
    • 2013
  • In this paper, we implement a hardware for motor control based on FPGA + embedded processor using Zynq EPP which is All Programmable SoC in order to improve a structural problem of motion control based on such as DSP, MCU and FPGA previously. The implemented motor controller that is fused controller with advantage of FPGA and embedded processor. The signal processing part of high velocity motor control is performed by motor controller based on FPGA. A motion profile and kinematic calculation that are required algorithm process such as operation of a complicate decimal point has processed in an embedded processor based on dual core. As a result of a hardware implementation, it has an advantage that has can be realized an effect of distribution process in one chip. It has also an advantage that is able to organize as a multi-axis motor controller through adding the IP core of motor control implemented on FPGA.

FPGA Design and SoC Implementation of Constant-Amplitude Multicode Bi-Orthogonal Modulation (정진폭 다중 부호 이진 직교 변복조기의 FPGA 설계 및 SoC 구현)

  • Hong, Dae-Ki;Kim, Yong-Seong;Kim, Sun-Hee;Cho, Jin-Woong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1102-1110
    • /
    • 2007
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the CAMB (Constant-Amplitude Multi-code Biorthogonal) modulation, and implement the SoC (System on Chip). The ASIC (Application Specific Integrated Circuit) chip is be implemented through targeting and board test. This 12Mbps modem SoC includes the ARM (Advanced RISC Machine)7TDMI, 64Kbyte SRAM(Static Random Access Memory) and ADC (Analog to Digital Converter)/DAC (Digital to Analog Converter) for flexible applications. Additionally, the modem SoC can support the variable communication interfaces such as the 16-bits PCMCIA (Personal Computer Memory Card International Association), USB (Universal Serial Bus) 1.1, and 16C550 Compatible UART (Universal Asynchronous Receiver/Transmitter).

A Reconfigurable Image Processing SoC Based on LEON 2 Core (LEON 2 코어 기반 재구성 가능 영상처리 SoC 개발)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1418-1423
    • /
    • 2009
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for image processing applications to use in wearable/mobile products. The target Soc consists of LEON 2 core, AMBA/APB bus-systems and custom-designed controllers. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, an image processing application is performed.

A SoC Based on a Neural Network for Embedded Smart Applications (임베디드 스마트 응용을 위한 신경망기반 SoC)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2059-2063
    • /
    • 2009
  • This paper presents a programmable System-On-a-chip (SoC) for various embedded smart applications that need Neural Network computations. The system is fully implemented into a prototyping platform based on Field Programmable Gate Array (FPGA). The SoC consists of an embedded processor core and a reconfigurable hardware accelerator for neural computations. The performance of the SoC is evaluated using a real image processing application, an optical character recognition (OCR) system.

Implementation of SoC for NMEA2000 Ship Standard Network Protocol Using FPGA

  • Park, Dong-Hyun;Hong, Ji-Tae;Kim, Kyung-Yup;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • IEC61162-3 known as NMEA2000 protocol is approved as a standard network of SOLAS ship by ISO and used for the instrument network which exchanges data in real-time. For easy the development of ship network equipments, this study is focused on the development of SoC which can convert to NMEA2000 protocol from various kind of protocols such as TCP/IP, NMEA0183, RS422 and others using FPGA and u-Blaze. In this paper, we composed NMEA2000 protocol stack on FPGA and verified NMEA2000 network communication of FPGA system by connecting with commercialized devices through PC Hyper-terminal and network monitoring program.

SoC Emulation in Multiple FPGA using Bus Splitter

  • Wooseung Yang;Lee, Seung-Jong;Ando Ki;Kyung, Chong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.859-862
    • /
    • 2003
  • This paper proposes an emulation environment for SoC designs using small number of large gate-count FPGA's and a PC system. To overcome the pin limitation problem in partitioning the design when the design size overwhelms the FPGA gate count, we use bus splitter modules that replicate on-chip bus signals in one FPGA to arbitrary number of other FPGA's with minimal pin count. The proposed scheme is applied to the emulation of 2 million gate multimedia processing chip using two Xilinx Viretex-2 6000 FPGA devices in 6.6MHz operating frequency. An ARM core, memories, camera and LCD display are modeled in software using dual 2GHz Pentium-III processors. This scheme can be utilized for more than 2 FPGA's in the same ways as two FPGA case without losing emulation speed.

  • PDF

Verification and Verification Method of Safety Class FPGA in Nuclear Power Plant (원자력발전소의 안전등급 FPGA 확인 및 검증 방법)

  • Lee, Dongil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.464-466
    • /
    • 2019
  • Controllers used in nuclear power plants require high reliability. A controller including a Field Programmable Gate Array (FPGA) and a Complex Programmable Logic Device (referred to hereinafter as FPGA) has been applied to many Nuclear Power Plants (NPP) in the past, including the APR1400 (Advanced Power Reactor 1400), a Korean digital nuclear power plant. Initially, the FPGA was considered as a general IC (Integrated Circuit) and verified only by device verification and performance testing. In the 1990s, research on FPGA verification began, and until the FPGA became a chip, it was regarded as software and the software Verification and Validation (V&V) using IEEE 1012-2004 was implemented. Currently, IEC 62566, which is a European standard, has been applied for a lot of verification. This method has been evaluated as the most sensible method to date. This is because the method of verifying the characteristics of SoC (System on Chip), which has been a problem in the existing verification method, is sufficiently applied. However, IEC 62566 is a European standard that has not yet been adopted in the United States and maintains the application of IEEE 1012 for FPGA. IEEE 1012-2004 or IEC 62566 is a technical standard. In practice, various methods are applied to meet technical standards. In this paper, we describe the procedure and important points of verification method of Nuclear Safety Class FPGA applying SoC verification method.

  • PDF