• 제목/요약/키워드: Small-signal modeling

Search Result 150, Processing Time 0.025 seconds

A Simplified GaAs MESFET Modeling for the Design of Ultrabroad-Band Microwave Amplifiers (초광대역 마이크로파 증폭기 설계를 위한 단순화한 GaAs MESFET 모델링)

  • Yoon, Young-Chul;Kim, Byung-Chul;Ahn, Dal;Chang, Ik-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1308-1316
    • /
    • 1989
  • A simplified 10-element GaAs MESFET equivalent circuit model has been presented which is suitable for the design of ultrabroad-band microwave small-signal amplification, the these circuit element values are extracted from measured S-parameters using complex-curve fitting algorithm. Packaged GaAs MESFET equivalent circuits are composed of intrinsic \ulcornermodel and several extrinsic elements at microwave frequencies, of which the largest effects are caused by package lead inductances. If these are eliminated from measured S-parameters, newly obtained S-parameters are closed to intrinsic \ulcornermodel, and the rest element values can be easily extracted. The modeling results applied to the packaged GaAs MESFET NE71083 are almost equal between the measure S-parameters and the mideled S-parameters within b 2% errors from DC to 8GHz, and errors are increased to \ulcorner% upto 12GHz wide bandwidth.

  • PDF

Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter (2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

Modeling and Analysis of an Avionic Battery Discharge Regulator

  • Chen, Qian;Yu, Haihong;Huang, Xiaoming;Lu, Yi;Qiu, Peng;Tong, Kai;Xuan, Jiazhuo;Xu, Feng;Xuan, Xiaohua;Huang, Weibo;Zhang, Yajing
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1218-1225
    • /
    • 2016
  • The avionic battery discharge regulator (BDR) plays an important role in a power-conditioning unit. With its merits of high efficiency, stable transfer function, and continuous input and output currents, the non-isolated Weinberg converter (NIWC) is suitable for avionic BDR. An improved peak current control strategy is proposed to achieve high current-sharing accuracy. Current and voltage regulators are designed based on a small signal model of a three-module NIWC system. The system with the designed regulators operates stably under any condition and achieves excellent transient response and current-sharing accuracy.

Modeling and Analysis of The Buck Converter in Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 모델링과 해석)

  • Jung, Seung-Hwan;Choy, Ick;Choi, Ju-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.1039-1048
    • /
    • 2013
  • Generally, the buck converter controller was designed to control output voltage of the converter. However, design of the controller in photovoltaic power conditioning system is different from general design. the controller in photovoltaic power conditioning system controls input voltage of the converter(output voltage of the solar cell) for MPPT(Maximum Power Point Tracking). This paper proposes novel buck converter model which can control input voltage of the converter. We integrate this model with a model of solar cell. and linearize at the operating point(MPP). In addition, we determine whether or not suitable for the general linear controller design into small and large signal analysis.

Dynamics Modeling and Vibration Analysis of Momentum Wheel for the Control Moment Gyros (제어모멘트자이로용 모멘텀휠의 동역학모델링과 진동분석)

  • Park, Jongoh;Myung, Hyunsam;Lee, Henzeh;Bang, Hyochoong;Choo, Yeongyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.180-185
    • /
    • 2009
  • Actuator-induced disturbance is one of the crucial factors of spacecraft attitude pointing and stability in fine attitude control problems. The control moment gyros (CMGs) are known as very attractive actuators from the point of high power and low weight. In order to develop a CMG as an actuator for fine controls, CMG-induced disturbances should be analyzed. Therefore, this paper aims to develop an analytic model and predict the effect of disturbances of CMGs by assuming static and dynamic imbalances. The proposed model is induced by the Lagrangian method on the basis of the small signal assumption. In this research, mechanical system of the CMG is designed and the main components of CMG are producted.

  • PDF

Modeling and Design of Zero-Voltage-Switching Controller for Wireless Power Transfer Systems Based on Closed-Loop Dominant Pole

  • Chen, Cheng;Zhou, Hong;Deng, Qijun;Hu, Wenshan;Yu, Yanjuan;Lu, Xiaoqing;Lai, Jingang
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1235-1247
    • /
    • 2019
  • Zero-Voltage-Switching (ZVS) operation for a Wireless Power Transfer (WPT) system can be achieved by designing a ZVS controller. However, the performance of the controller in some industrial applications needs to be designed tightly. This paper introduces a ZVS controller design method for WPT systems. The parameters of the controller are designed according to the desired performance based on the closed loop dominant pole placement method. To describe the dynamic characteristics of the system ZVS angle, a nonlinear dynamic model is deduced and linearized using the small signal linearization method. By analyzing the zero-pole distribution, a low-order equivalent model that facilitates the controller design is obtained. The parameters of the controller are designed by calculating the time constant of the closed-loop dominant poles. A prototype of a WPT system with the designed controller and a five-stage multistage series variable capacitor (MSVC) is built and tested to verify the performance of the controller. The recorded response curves and waveforms show that the designed controller can maintain the ZVS angle at the reference angle with satisfactory control performance.

Noise Reduction Using Gaussian Mixture Model and Morphological Filter (가우스 혼합모델과 형태학적 필터를 이용한 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Generally, wavelet coefficients can be classified into two categories: large coefficients with much signal information and small coefficients with little signal component. This statistical characteristic of wavelet coefficient is approximated to Gaussian mixture model and efficiently applied to noise reduction. In this paper, we propose an image denoising method using mixture modeling of wavelet coefficients. Binary mask value is generated by proper threshold which classifies wavelet coefficients into two categories. Information of binary mask value is used to remove image noise. We also develope an enhancement method of mask value using morphological filter, and apply it to image denoising for improvement of the proposed method. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

Implement of a Remote Solid State Power Controller by DSP (DSP를 이용한 원격전력제어 장치 구현)

  • Jeon, Yeong-Cheol;Lee, Hyuek-Jae;Chong, Won-Yong;Park, Young-Seak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.728-733
    • /
    • 2010
  • The conventional electro-mechanical circuit break and relay are widely used in large-sized DC power system. However, recently due to high reliability, remote controllability and small power dissipation of a RSSPC(Remote Solid State Power Controller), high-friendly DC power systems have increasingly adopted the RSSPC as a essential element. In this paper, we have conducted a mathematical modeling to analyze the performance of the proposed RSSPC system with the optimal signal range for $I^2t$. Based on the calculation, the RSSPC system has been implemented by DSP.

High-Frequency Modeling and Optimization of E/O Response and Reflection Characteristics of 40 Gb/s EML Module for Optical Transmitters

  • Xu, Chengzhi;Xu, Y.Z.;Zhao, Yanli;Lu, Kunzhong;Liu, Weihua;Fan, Shibing;Zou, Hui;Liu, Wen
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • A complete high-frequency small-signal circuit model of a 40 Gb/s butterfly electroabsorption modulator integrated laser module is presented for the first time to analyze and optimize its electro-optic (E/O) response and reflection characteristics. An agreement between measured and simulated results demonstrates the accuracy and validity of the procedures. By optimizing the bonding wire length and the impedance of the coplanar waveguide transmission lines, the E/O response increases approximately 5% to 15% from 20 GHz to 33 GHz, while the signal injection efficiency increases from approximately 15% to 25% over 18 GHz to 35 GHz.

Channel Design of COMS Sensor Data Transmitter and Receiver System (COMS 센서 데이터 송수신 채널 시스템 설계)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.444-451
    • /
    • 2007
  • The design parameters of transmitter and receiver channel systems for COMS, which provides meteorological and ocean data services, were analyzed and the channel design parameters for a proper design of a small user-terminal were proposed in this paper. The COMS transmits the oceanic observation data by using the S/L-band link to the earth station. The meteorological data also are transmitted to the earth station, the meteorological data services, which are processed in the earth station, are provided to user. The sensor data are transmitted as digital signal type and are received by bilateral small-sized user terminals. So the optimal channel system for transmission and reception of sensor data should be designed on the basis of the channel modeling and analyzed results for primary technologies.