Noise Reduction Using Gaussian Mixture Model and Morphological Filter

가우스 혼합모델과 형태학적 필터를 이용한 잡음 제거

  • Eom Il-Kyu (Dept. of Information and Communication Engineering, Miryang National University) ;
  • Kim Yoo-Shin (Dept. of Electronics Engineering, Pusan National University)
  • Published : 2004.01.01

Abstract

Generally, wavelet coefficients can be classified into two categories: large coefficients with much signal information and small coefficients with little signal component. This statistical characteristic of wavelet coefficient is approximated to Gaussian mixture model and efficiently applied to noise reduction. In this paper, we propose an image denoising method using mixture modeling of wavelet coefficients. Binary mask value is generated by proper threshold which classifies wavelet coefficients into two categories. Information of binary mask value is used to remove image noise. We also develope an enhancement method of mask value using morphological filter, and apply it to image denoising for improvement of the proposed method. Simulation results shows the proposed method have better PSNRs than those of the state of art denoising methods.

웨이블릿 영역은 일반적으로 신호 성분을 많이 포함하는 큰 계수와 신호 성분이 작은 크기의 계수로 나누어 질 수 있다. 이러한 웨이블릿 계수의 통계적 특성을 가우스 혼합 모델로 설정하고, 잡음 제거에 응용하는 것은 효율적이다. 본 논문에서는 웨이블릿 계수의 혼합 모델링을 이용하여 영상의 잡음 제거 방법을 제안한다. 적절한 문턱값을 이용하여 웨이블릿 계수를 두영역으로 분리하여 이진 마스크를 생성하고, 생성된 마스크의 정보는 잡음 제거에 효율적으로 사용된다 또한 생성된 마스크의 정보를 형태학적 필터를 이용하여 보다 정확히 추정하고 이를 이용하여 제안한 잡음 제거 방법의 성능을 높이는 방법을 제안한다. 모의실험 결과를 통하여 제안 방법이 최신 잡음 제거 방법보다 우수한 PSNR을 나타낸다는 것을 보여 준다.

Keywords

References

  1. M. K. Mihcak, I. Kozintsev, K. Ramchandran, and P. Moulin, 'Low-complexity image denoising based on statistical modeling of wavelet coefficients,' IEEE Signal Processing Letters, vol. 6, pp. 300-303, 1999 https://doi.org/10.1109/97.803428
  2. S. G. Chang, B. Yu, and M. Vetterli, 'Spatially adaptive wavelet thresholding with context modeling for image denoising,' IEEE Trans. Image Processing, vol.9, pp.1522-1531, 2000 https://doi.org/10.1109/83.862630
  3. M. K. Mihcak, I. Kozintsev, K. Ramchandran, 'Spatially Adaptive statistical Modeling of Wavelet Image Coefficients and Its Application to Denosing,' Proc. IEEE Int. Conf. Acous., Speech and Signal Processing, vol.6, pp. 3253-3256, 1999 https://doi.org/10.1109/ICASSP.1999.757535
  4. J. Liu and P. Moulin, 'Image denoising based on scale-space mixture modeling of wavelet coefficients,' Proc. IEEE Int. Conf. on Image Processing, Kobe, Japan, 1999 https://doi.org/10.1109/ICIP.1999.821636
  5. M. S. Crouse, R. D. Nowak, and R.G. Baraniuk, 'Wavelet-based statistical signal processing using hidden Markov models,'IEEE. Trans. Image Processing, vol.46, pp. 886-902, 1998 https://doi.org/10.1109/78.668544
  6. J. K. Romberg, H. Choi, and R. G. Baraniuk, 'Bayesian tree-structured image modeling using wavelet-domain hidden Markov models,' IEEE. Trans. Image Processing, vol.10, no.7, pp. 1056-1068, 2001 https://doi.org/10.1109/83.931100
  7. H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, 'Hidden Markov Tree Modeling of Complex Wavelet Transforms,' Proc. IEEE Int. Conf. Acous., Speech and Signal Processing, Istanbul, Turkey, June, 2000 https://doi.org/10.1109/ICASSP.2000.861889
  8. J. K. Romberg, H. Choi, and R. Baraniuk, 'Bayesian tree structured image modeling using wavelet domain hidden Markov model, ' Proc. SPIE, vol.3816, pp.31-44, 1999 https://doi.org/10.1117/12.351328
  9. E. H. Adelson, E. Simoncelli, and R. Hingorani, 'Orthogonal pyramid transforms for image coding,' Proc. SPIE, vol.845, pp.50-58, 1987
  10. M. Malfiat and D. Roose, 'Wavelet-based image denoising using a Markov random field a priori model,' ,' IEEE. Transaction on Image Processing, vo.6, no.4, pp.549-565, 1997 https://doi.org/10.1109/83.563320
  11. A. Pizurica, W. Ohulips, I. Lemahieu, and M. Acheroy, 'A joint inter- and intra scale statistical model for Bayesian wavelet based image denoising,' IEEE. Transaction on Image Processing, vol.11, no.5, pp.545-557, 2002 https://doi.org/10.1109/TIP.2002.1006401
  12. L. Sendur and I. W. Selesnick, 'Bivariate shrinkage with local variance estimation,' IEEE Signal Processing Letters, vol.9, no.12, pp.438-441, 2002 https://doi.org/10.1109/LSP.2002.806054
  13. Il Kyu Eom and Yoo Shin Kim, 'Image Denoising Using Statistical Classification of Wavelet Coefficients,' Proceeding of lEEK Fall Conference, vol.25, no.2, pp.529-532, 2002
  14. Z. Cai, T. H. Cheng, C. Lu, and K. R. Subramanian, 'Efficient wavelet based image denoising algorithm,' Electron. Lett., vol. 37, no.11, pp.683-685, 2001 https://doi.org/10.1049/el:20010466